Nuprl Lemma : list-max_wf
∀[T:Type]. ∀[f:T ⟶ ℤ]. ∀[L:T List].  list-max(x.f[x];L) ∈ i:ℤ × {x:T| f[x] = i ∈ ℤ}  supposing 0 < ||L||
Proof
Definitions occuring in Statement : 
list-max: list-max(x.f[x];L)
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
list-max: list-max(x.f[x];L)
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
Lemmas referenced : 
outl_wf, 
equal-wf-T-base, 
top_wf, 
list-max-aux_wf, 
list-max-aux-property, 
less_than_wf, 
length_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
intEquality, 
setEquality, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
lambdaEquality, 
independent_isectElimination, 
dependent_functionElimination, 
productElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
isect_memberEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[L:T  List].    list-max(x.f[x];L)  \mmember{}  i:\mBbbZ{}  \mtimes{}  \{x:T|  f[x]  =  i\}    supposing  0  <  ||L|\000C|
Date html generated:
2016_05_14-PM-01_43_07
Last ObjectModification:
2015_12_26-PM-05_31_36
Theory : list_1
Home
Index