Nuprl Lemma : list-max_wf

[T:Type]. ∀[f:T ⟶ ℤ]. ∀[L:T List].  list-max(x.f[x];L) ∈ i:ℤ × {x:T| f[x] i ∈ ℤ}  supposing 0 < ||L||


Proof




Definitions occuring in Statement :  list-max: list-max(x.f[x];L) length: ||as|| list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a list-max: list-max(x.f[x];L) so_apply: x[s] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] all: x:A. B[x] and: P ∧ Q
Lemmas referenced :  outl_wf equal-wf-T-base top_wf list-max-aux_wf list-max-aux-property less_than_wf length_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin productEquality intEquality setEquality cumulativity hypothesisEquality applyEquality because_Cache hypothesis lambdaEquality independent_isectElimination dependent_functionElimination productElimination axiomEquality equalityTransitivity equalitySymmetry natural_numberEquality isect_memberEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[L:T  List].    list-max(x.f[x];L)  \mmember{}  i:\mBbbZ{}  \mtimes{}  \{x:T|  f[x]  =  i\}    supposing  0  <  ||L|\000C|



Date html generated: 2016_05_14-PM-01_43_07
Last ObjectModification: 2015_12_26-PM-05_31_36

Theory : list_1


Home Index