Nuprl Lemma : path-eq-equiv
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[I:Cname List]. ∀[alpha:X(I)].
  EquivRel(I-path(X;A;a;b;I;alpha);p,q.path-eq(X;A;I;alpha;p;q))
Proof
Definitions occuring in Statement : 
path-eq: path-eq(X;A;I;alpha;p;q)
, 
I-path: I-path(X;A;a;b;I;alpha)
, 
cubical-term: {X ⊢ _:AF}
, 
cubical-type: {X ⊢ _}
, 
I-cube: X(I)
, 
cubical-set: CubicalSet
, 
coordinate_name: Cname
, 
list: T List
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
I-path: I-path(X;A;a;b;I;alpha)
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
path-eq: path-eq(X;A;I;alpha;p;q)
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
false: False
, 
sym: Sym(T;x,y.E[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
assert: ↑b
, 
bnot: ¬bb
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
guard: {T}
, 
sq_type: SQType(T)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
int_upper: {i...}
, 
coordinate_name: Cname
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
nameset: nameset(L)
, 
rename-one-name: rename-one-name(z1;z2)
, 
id-morph: 1
, 
name-morph: name-morph(I;J)
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
named-path: named-path(X;A;a;b;I;alpha;z)
, 
true: True
Lemmas referenced : 
cubical-type-ap-morph-id, 
cons_wf, 
coordinate_name_wf, 
rename-one-name_wf, 
cube-set-restriction_wf, 
iota_wf, 
l_member_wf, 
istype-void, 
named-path_wf, 
path-eq_wf, 
I-cube_wf, 
list_wf, 
cubical-term_wf, 
cubical-type_wf, 
cubical-set_wf, 
nameset_wf, 
equal-wf-T-base, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
eqff_to_assert, 
nameset_subtype_extd-nameset, 
int_subtype_base, 
istype-int, 
le_wf, 
set_subtype_base, 
subtype_base_sq, 
assert-eq-cname, 
eqtt_to_assert, 
eq-cname_wf, 
id-morph_wf, 
name-morphs-equal, 
equal_wf, 
cubical-type-at_wf, 
cube-set-restriction-comp, 
iff_weakening_equal, 
cubical-type-ap-morph-comp, 
rename-one-same, 
name-morph_wf, 
cube-set-restriction-when-id, 
rename-one-comp, 
squash_wf, 
true_wf, 
istype-universe, 
subtype_rel_self, 
rename-one-iota, 
cubical-type-ap-morph_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
independent_pairFormation, 
lambdaFormation_alt, 
productElimination, 
thin, 
setElimination, 
rename, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
productIsType, 
setIsType, 
universeIsType, 
sqequalRule, 
functionIsType, 
independent_functionElimination, 
voidElimination, 
equalityIsType1, 
promote_hyp, 
equalityIsType3, 
dependent_pairFormation_alt, 
dependent_functionElimination, 
natural_numberEquality, 
closedConclusion, 
intEquality, 
cumulativity, 
instantiate, 
equalityElimination, 
unionElimination, 
functionExtensionality, 
equalitySymmetry, 
equalityTransitivity, 
inhabitedIsType, 
lambdaEquality_alt, 
applyEquality, 
dependent_set_memberEquality_alt, 
equalityIstype, 
hyp_replacement, 
applyLambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[I:Cname  List].  \mforall{}[alpha:X(I)].
    EquivRel(I-path(X;A;a;b;I;alpha);p,q.path-eq(X;A;I;alpha;p;q))
Date html generated:
2019_11_06-PM-00_38_59
Last ObjectModification:
2018_12_13-PM-03_03_37
Theory : cubical!sets
Home
Index