Nuprl Lemma : path-eq-equiv

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[I:Cname List]. ∀[alpha:X(I)].
  EquivRel(I-path(X;A;a;b;I;alpha);p,q.path-eq(X;A;I;alpha;p;q))


Proof




Definitions occuring in Statement :  path-eq: path-eq(X;A;I;alpha;p;q) I-path: I-path(X;A;a;b;I;alpha) cubical-term: {X ⊢ _:AF} cubical-type: {X ⊢ _} I-cube: X(I) cubical-set: CubicalSet coordinate_name: Cname list: List equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] I-path: I-path(X;A;a;b;I;alpha) equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] path-eq: path-eq(X;A;I;alpha;p;q) member: t ∈ T uimplies: supposing a cand: c∧ B not: ¬A implies:  Q prop: false: False sym: Sym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) iff: ⇐⇒ Q rev_implies:  Q assert: b bnot: ¬bb or: P ∨ Q exists: x:A. B[x] bfalse: ff guard: {T} sq_type: SQType(T) so_apply: x[s] so_lambda: λ2x.t[x] int_upper: {i...} coordinate_name: Cname ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 nameset: nameset(L) rename-one-name: rename-one-name(z1;z2) id-morph: 1 name-morph: name-morph(I;J) subtype_rel: A ⊆B squash: T named-path: named-path(X;A;a;b;I;alpha;z) true: True
Lemmas referenced :  cubical-type-ap-morph-id cons_wf coordinate_name_wf rename-one-name_wf cube-set-restriction_wf iota_wf l_member_wf istype-void named-path_wf path-eq_wf I-cube_wf list_wf cubical-term_wf cubical-type_wf cubical-set_wf nameset_wf equal-wf-T-base assert_wf iff_weakening_uiff assert-bnot bool_wf bool_cases_sqequal bool_subtype_base eqff_to_assert nameset_subtype_extd-nameset int_subtype_base istype-int le_wf set_subtype_base subtype_base_sq assert-eq-cname eqtt_to_assert eq-cname_wf id-morph_wf name-morphs-equal equal_wf cubical-type-at_wf cube-set-restriction-comp iff_weakening_equal cubical-type-ap-morph-comp rename-one-same name-morph_wf cube-set-restriction-when-id rename-one-comp squash_wf true_wf istype-universe subtype_rel_self rename-one-iota cubical-type-ap-morph_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt independent_pairFormation lambdaFormation_alt productElimination thin setElimination rename cut introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis because_Cache independent_isectElimination productIsType setIsType universeIsType sqequalRule functionIsType independent_functionElimination voidElimination equalityIsType1 promote_hyp equalityIsType3 dependent_pairFormation_alt dependent_functionElimination natural_numberEquality closedConclusion intEquality cumulativity instantiate equalityElimination unionElimination functionExtensionality equalitySymmetry equalityTransitivity inhabitedIsType lambdaEquality_alt applyEquality dependent_set_memberEquality_alt equalityIstype hyp_replacement applyLambdaEquality imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[I:Cname  List].  \mforall{}[alpha:X(I)].
    EquivRel(I-path(X;A;a;b;I;alpha);p,q.path-eq(X;A;I;alpha;p;q))



Date html generated: 2019_11_06-PM-00_38_59
Last ObjectModification: 2018_12_13-PM-03_03_37

Theory : cubical!sets


Home Index