Nuprl Lemma : cubical-type-ap-morph-id

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[I:Cname List]. ∀[f:name-morph(I;I)]. ∀[a:X(I)]. ∀[u:A(a)].
  (u f) u ∈ A(a) supposing 1 ∈ name-morph(I;I)


Proof




Definitions occuring in Statement :  cubical-type-ap-morph: (u f) cubical-type-at: A(a) cubical-type: {X ⊢ _} I-cube: X(I) cubical-set: CubicalSet id-morph: 1 name-morph: name-morph(I;J) coordinate_name: Cname list: List uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: cubical-type: {X ⊢ _} subtype_rel: A ⊆B squash: T guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q true: True cubical-type-at: A(a) pi1: fst(t) cubical-type-ap-morph: (u f) pi2: snd(t) all: x:A. B[x]
Lemmas referenced :  equal_wf name-morph_wf id-morph_wf cubical-type-at_wf cubical-type-ap-morph_wf subtype_rel-equal cube-set-restriction_wf squash_wf true_wf I-cube_wf cube-set-restriction-when-id subtype_rel_self iff_weakening_equal list_wf coordinate_name_wf cubical-type_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality hypothesis because_Cache extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename productElimination hyp_replacement equalitySymmetry applyLambdaEquality applyEquality independent_isectElimination lambdaEquality imageElimination equalityTransitivity universeEquality sqequalRule imageMemberEquality baseClosed instantiate independent_functionElimination natural_numberEquality isect_memberEquality axiomEquality dependent_functionElimination

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[I:Cname  List].  \mforall{}[f:name-morph(I;I)].  \mforall{}[a:X(I)].  \mforall{}[u:A(a)].
    (u  a  f)  =  u  supposing  f  =  1



Date html generated: 2018_05_23-PM-06_28_40
Last ObjectModification: 2018_05_20-PM-04_08_45

Theory : cubical!sets


Home Index