Nuprl Lemma : cubical-type-ap-morph-id
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[I:Cname List]. ∀[f:name-morph(I;I)]. ∀[a:X(I)]. ∀[u:A(a)].
  (u a f) = u ∈ A(a) supposing f = 1 ∈ name-morph(I;I)
Proof
Definitions occuring in Statement : 
cubical-type-ap-morph: (u a f), 
cubical-type-at: A(a), 
cubical-type: {X ⊢ _}, 
I-cube: X(I), 
cubical-set: CubicalSet, 
id-morph: 1, 
name-morph: name-morph(I;J), 
coordinate_name: Cname, 
list: T List, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
prop: ℙ, 
cubical-type: {X ⊢ _}, 
subtype_rel: A ⊆r B, 
squash: ↓T, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
true: True, 
cubical-type-at: A(a), 
pi1: fst(t), 
cubical-type-ap-morph: (u a f), 
pi2: snd(t), 
all: ∀x:A. B[x]
Lemmas referenced : 
equal_wf, 
name-morph_wf, 
id-morph_wf, 
cubical-type-at_wf, 
cubical-type-ap-morph_wf, 
subtype_rel-equal, 
cube-set-restriction_wf, 
squash_wf, 
true_wf, 
I-cube_wf, 
cube-set-restriction-when-id, 
subtype_rel_self, 
iff_weakening_equal, 
list_wf, 
coordinate_name_wf, 
cubical-type_wf, 
cubical-set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
hypothesis, 
because_Cache, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
productElimination, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
universeEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_functionElimination, 
natural_numberEquality, 
isect_memberEquality, 
axiomEquality, 
dependent_functionElimination
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[I:Cname  List].  \mforall{}[f:name-morph(I;I)].  \mforall{}[a:X(I)].  \mforall{}[u:A(a)].
    (u  a  f)  =  u  supposing  f  =  1
Date html generated:
2018_05_23-PM-06_28_40
Last ObjectModification:
2018_05_20-PM-04_08_45
Theory : cubical!sets
Home
Index