Nuprl Lemma : path-eq_wf

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[I:Cname List]. ∀[alpha:X(I)]. ∀[p,q:I-path(X;A;a;b;I;alpha)].
  (path-eq(X;A;I;alpha;p;q) ∈ ℙ)


Proof




Definitions occuring in Statement :  path-eq: path-eq(X;A;I;alpha;p;q) I-path: I-path(X;A;a;b;I;alpha) cubical-term: {X ⊢ _:AF} cubical-type: {X ⊢ _} I-cube: X(I) cubical-set: CubicalSet coordinate_name: Cname list: List uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T I-path: I-path(X;A;a;b;I;alpha) named-path: named-path(X;A;a;b;I;alpha;z) path-eq: path-eq(X;A;I;alpha;p;q) squash: T prop: all: x:A. B[x] uimplies: supposing a and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q true: True
Lemmas referenced :  equal_wf cubical-type-at_wf cons_wf coordinate_name_wf cube-set-restriction_wf iota_wf squash_wf true_wf I-cube_wf cube-set-restriction-comp rename-one-name_wf iff_weakening_equal rename-one-iota cubical-type-ap-morph_wf I-path_wf list_wf cubical-term_wf cubical-type_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalHypSubstitution productElimination thin setElimination rename sqequalRule introduction extract_by_obid isectElimination hypothesisEquality hypothesis applyEquality lambdaEquality imageElimination because_Cache equalityTransitivity equalitySymmetry universeEquality dependent_functionElimination independent_isectElimination independent_pairFormation imageMemberEquality baseClosed independent_functionElimination natural_numberEquality hyp_replacement

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[I:Cname  List].  \mforall{}[alpha:X(I)].
\mforall{}[p,q:I-path(X;A;a;b;I;alpha)].
    (path-eq(X;A;I;alpha;p;q)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_05-PM-03_54_46
Last ObjectModification: 2017_07_28-AM-11_27_49

Theory : cubical!sets


Home Index