Step
*
2
1
of Lemma
Kan-discrete_wf
1. X : CubicalSet
2. T : Type
3. I : Cname List
4. alpha : X(I)
5. J : nameset(I) List
6. x : nameset(I)
7. i : ℕ2
8. bx : A-open-box(X;discr(T);I;alpha;J;x;i)
9. i@0 : ℕ||bx||
⊢ is-A-face(X;discr(T);I;alpha;(λI,alpha,J,x,i,bx. (snd(snd(hd(bx))))) I alpha J x i bx;bx[i@0])
BY
{ (RenameVar `k' (-1)
THEN D -2
THEN RepUR ``is-A-face cubical-type-ap-morph`` 0
THEN RepUR ``discrete-cubical-type cubical-type-at`` 0
THEN ∀h:hyp. RepUR ``A-face cubical-type-at discrete-cubical-type`` h ) }
1
1. X : CubicalSet
2. T : Type
3. I : Cname List
4. alpha : X(I)
5. J : nameset(I) List
6. x : nameset(I)
7. i : ℕ2
8. bx : (x:nameset(I) × i:ℕ2 × T) List
9. [%1] : A-adjacent-compatible(X;<λI,alpha. T, λI,J,f,alpha,x. x>;I;alpha;bx)
∧ (¬(x ∈ J))
∧ l_subset(Cname;J;I)
∧ ((∀y:nameset(J). ∀c:ℕ2. (∃f∈bx. A-face-name(f) = <y, c> ∈ (nameset(I) × ℕ2)))
∧ (∃f∈bx. A-face-name(f) = <x, i> ∈ (nameset(I) × ℕ2))
∧ (∀f∈bx.¬(A-face-name(f) = <x, 1 - i> ∈ (nameset(I) × ℕ2))))
∧ (∀f∈bx.(fst(f) ∈ [x / J]))
∧ (∀f1,f2∈bx. ¬(A-face-name(f1) = A-face-name(f2) ∈ (nameset(I) × ℕ2)))
10. k : ℕ||bx||
⊢ let y,b,w = bx[k] in
(snd(snd(hd(bx)))) = w ∈ T
Latex:
Latex:
1. X : CubicalSet
2. T : Type
3. I : Cname List
4. alpha : X(I)
5. J : nameset(I) List
6. x : nameset(I)
7. i : \mBbbN{}2
8. bx : A-open-box(X;discr(T);I;alpha;J;x;i)
9. i@0 : \mBbbN{}||bx||
\mvdash{} is-A-face(X;discr(T);I;alpha;(\mlambda{}I,alpha,J,x,i,bx. (snd(snd(hd(bx))))) I alpha J x i bx;bx[i@0])
By
Latex:
(RenameVar `k' (-1)
THEN D -2
THEN RepUR ``is-A-face cubical-type-ap-morph`` 0
THEN RepUR ``discrete-cubical-type cubical-type-at`` 0
THEN \mforall{}h:hyp. RepUR ``A-face cubical-type-at discrete-cubical-type`` h )
Home
Index