Nuprl Lemma : Kan-discrete_wf
∀[X:CubicalSet]. ∀[T:Type].  (Kan-discrete(T) ∈ {X ⊢ _(Kan)})
Proof
Definitions occuring in Statement : 
Kan-discrete: Kan-discrete(T), 
Kan-cubical-type: {X ⊢ _(Kan)}, 
cubical-set: CubicalSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
Kan-discrete: Kan-discrete(T), 
Kan-cubical-type: {X ⊢ _(Kan)}, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
nameset: nameset(L), 
and: P ∧ Q, 
cand: A c∧ B, 
prop: ℙ, 
A-open-box: A-open-box(X;A;I;alpha;J;x;i), 
implies: P ⇒ Q, 
or: P ∨ Q, 
cons: [a / b], 
top: Top, 
l_exists: (∃x∈L. P[x]), 
exists: ∃x:A. B[x], 
guard: {T}, 
int_seg: {i..j-}, 
false: False, 
coordinate_name: Cname, 
int_upper: {i...}, 
lelt: i ≤ j < k, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
A-face: A-face(X;A;I;alpha), 
pi2: snd(t), 
discrete-cubical-type: discr(T), 
cubical-type-at: A(a), 
pi1: fst(t), 
Kan-A-filler: Kan-A-filler(X;A;filler), 
fills-A-open-box: fills-A-open-box(X;A;I;alpha;bx;cube), 
fills-A-faces: fills-A-faces(X;A;I;alpha;bx;L), 
l_all: (∀x∈L.P[x]), 
is-A-face: is-A-face(X;A;I;alpha;bx;f), 
cubical-type-ap-morph: (u a f), 
decidable: Dec(P), 
sq_type: SQType(T), 
ge: i ≥ j , 
sq_stable: SqStable(P), 
squash: ↓T, 
less_than: a < b, 
le: A ≤ B, 
less_than': less_than'(a;b), 
spreadn: spread3, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
A-adjacent-compatible: A-adjacent-compatible(X;A;I;alpha;L), 
A-face-compatible: A-face-compatible(X;A;I;alpha;f1;f2), 
pairwise: (∀x,y∈L.  P[x; y]), 
A-face-name: A-face-name(f), 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler), 
A-open-box-image: A-open-box-image(X;A;I;K;f;alpha;bx), 
name-morph: name-morph(I;J), 
A-face-image: A-face-image(X;A;I;K;f;alpha;face)
Lemmas referenced : 
discrete-cubical-type_wf, 
A-open-box_wf, 
subtype_rel_list, 
nameset_wf, 
coordinate_name_wf, 
int_seg_wf, 
list_wf, 
I-cube_wf, 
cubical-type-at_wf, 
Kan-A-filler_wf, 
uniform-Kan-A-filler_wf, 
cubical-set_wf, 
hd_wf, 
A-face_wf, 
equal_wf, 
list-cases, 
product_subtype_list, 
length_cons_ge_one, 
top_wf, 
length_of_nil_lemma, 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
length_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
select0, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
sq_stable__le, 
decidable__le, 
intformnot_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
select_wf, 
false_wf, 
decidable__lt, 
pi2_wf, 
not_wf, 
set_subtype_base, 
le_wf, 
lelt_wf, 
decidable__equal_int_seg, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
l_member_wf, 
equal-wf-base, 
pi1_wf_top, 
subtype_rel_product, 
nameset_subtype_base, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
map_nil_lemma, 
reduce_hd_cons_lemma, 
map_cons_lemma, 
assert_wf, 
isname_wf, 
all_wf, 
name-morph_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
dependent_pairEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
applyEquality, 
independent_isectElimination, 
setElimination, 
rename, 
sqequalRule, 
natural_numberEquality, 
functionEquality, 
independent_pairFormation, 
productElimination, 
productEquality, 
functionExtensionality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
isect_memberEquality, 
lambdaFormation, 
independent_functionElimination, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
voidElimination, 
voidEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
instantiate, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
hyp_replacement, 
applyLambdaEquality, 
independent_pairEquality, 
addLevel, 
levelHypothesis, 
baseApply, 
closedConclusion
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[T:Type].    (Kan-discrete(T)  \mmember{}  \{X  \mvdash{}  \_(Kan)\})
Date html generated:
2017_10_05-AM-10_26_13
Last ObjectModification:
2017_07_28-AM-11_22_45
Theory : cubical!sets
Home
Index