Nuprl Lemma : Kan-discrete_wf

[X:CubicalSet]. ∀[T:Type].  (Kan-discrete(T) ∈ {X ⊢ _(Kan)})


Proof




Definitions occuring in Statement :  Kan-discrete: Kan-discrete(T) Kan-cubical-type: {X ⊢ _(Kan)} cubical-set: CubicalSet uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Kan-discrete: Kan-discrete(T) Kan-cubical-type: {X ⊢ _(Kan)} all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a nameset: nameset(L) and: P ∧ Q cand: c∧ B prop: A-open-box: A-open-box(X;A;I;alpha;J;x;i) implies:  Q or: P ∨ Q cons: [a b] top: Top l_exists: (∃x∈L. P[x]) exists: x:A. B[x] guard: {T} int_seg: {i..j-} false: False coordinate_name: Cname int_upper: {i...} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A A-face: A-face(X;A;I;alpha) pi2: snd(t) discrete-cubical-type: discr(T) cubical-type-at: A(a) pi1: fst(t) Kan-A-filler: Kan-A-filler(X;A;filler) fills-A-open-box: fills-A-open-box(X;A;I;alpha;bx;cube) fills-A-faces: fills-A-faces(X;A;I;alpha;bx;L) l_all: (∀x∈L.P[x]) is-A-face: is-A-face(X;A;I;alpha;bx;f) cubical-type-ap-morph: (u f) decidable: Dec(P) sq_type: SQType(T) ge: i ≥  sq_stable: SqStable(P) squash: T less_than: a < b le: A ≤ B less_than': less_than'(a;b) spreadn: spread3 so_lambda: λ2x.t[x] so_apply: x[s] A-adjacent-compatible: A-adjacent-compatible(X;A;I;alpha;L) A-face-compatible: A-face-compatible(X;A;I;alpha;f1;f2) pairwise: (∀x,y∈L.  P[x; y]) A-face-name: A-face-name(f) true: True iff: ⇐⇒ Q rev_implies:  Q uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler) A-open-box-image: A-open-box-image(X;A;I;K;f;alpha;bx) name-morph: name-morph(I;J) A-face-image: A-face-image(X;A;I;K;f;alpha;face)
Lemmas referenced :  discrete-cubical-type_wf A-open-box_wf subtype_rel_list nameset_wf coordinate_name_wf int_seg_wf list_wf I-cube_wf cubical-type-at_wf Kan-A-filler_wf uniform-Kan-A-filler_wf cubical-set_wf hd_wf A-face_wf equal_wf list-cases product_subtype_list length_cons_ge_one top_wf length_of_nil_lemma int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf length_wf decidable__equal_int subtype_base_sq int_subtype_base select0 sq_stable__l_member decidable__equal-coordinate_name sq_stable__le decidable__le intformnot_wf intformeq_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma select_wf false_wf decidable__lt pi2_wf not_wf set_subtype_base le_wf lelt_wf decidable__equal_int_seg subtract_wf itermSubtract_wf int_term_value_subtract_lemma l_member_wf equal-wf-base pi1_wf_top subtype_rel_product nameset_subtype_base squash_wf true_wf iff_weakening_equal map_nil_lemma reduce_hd_cons_lemma map_cons_lemma assert_wf isname_wf all_wf name-morph_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality dependent_pairEquality extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality dependent_functionElimination because_Cache applyEquality independent_isectElimination setElimination rename sqequalRule natural_numberEquality functionEquality independent_pairFormation productElimination productEquality functionExtensionality axiomEquality equalityTransitivity equalitySymmetry universeEquality isect_memberEquality lambdaFormation independent_functionElimination unionElimination promote_hyp hypothesis_subsumption voidElimination voidEquality dependent_pairFormation int_eqEquality intEquality computeAll instantiate imageMemberEquality baseClosed imageElimination hyp_replacement applyLambdaEquality independent_pairEquality addLevel levelHypothesis baseApply closedConclusion

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[T:Type].    (Kan-discrete(T)  \mmember{}  \{X  \mvdash{}  \_(Kan)\})



Date html generated: 2017_10_05-AM-10_26_13
Last ObjectModification: 2017_07_28-AM-11_22_45

Theory : cubical!sets


Home Index