Nuprl Lemma : length_cons_ge_one
∀[x:Top]. ∀[l:Top List].  (||[x / l]|| ≥ 1 )
Proof
Definitions occuring in Statement : 
length: ||as||, 
cons: [a / b], 
list: T List, 
uall: ∀[x:A]. B[x], 
top: Top, 
ge: i ≥ j , 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
ge: i ≥ j , 
le: A ≤ B, 
and: P ∧ Q, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ
Lemmas referenced : 
pos_length, 
top_wf, 
cons_wf, 
cons_neq_nil, 
less_than'_wf, 
length_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
independent_isectElimination, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination
Latex:
\mforall{}[x:Top].  \mforall{}[l:Top  List].    (||[x  /  l]||  \mgeq{}  1  )
Date html generated:
2016_05_14-AM-06_35_02
Last ObjectModification:
2015_12_26-PM-00_35_13
Theory : list_0
Home
Index