Nuprl Lemma : length_cons_ge_one

[x:Top]. ∀[l:Top List].  (||[x l]|| ≥ )


Proof




Definitions occuring in Statement :  length: ||as|| cons: [a b] list: List uall: [x:A]. B[x] top: Top ge: i ≥  natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a ge: i ≥  le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False prop:
Lemmas referenced :  pos_length top_wf cons_wf cons_neq_nil less_than'_wf length_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality independent_isectElimination sqequalRule productElimination independent_pairEquality lambdaEquality dependent_functionElimination because_Cache natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination

Latex:
\mforall{}[x:Top].  \mforall{}[l:Top  List].    (||[x  /  l]||  \mgeq{}  1  )



Date html generated: 2016_05_14-AM-06_35_02
Last ObjectModification: 2015_12_26-PM-00_35_13

Theory : list_0


Home Index