Nuprl Lemma : pos_length

[A:Type]. ∀[l:A List].  ||l|| ≥ 1  supposing ¬(l [] ∈ (A List))


Proof




Definitions occuring in Statement :  length: ||as|| nil: [] list: List uimplies: supposing a uall: [x:A]. B[x] ge: i ≥  not: ¬A natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] or: P ∨ Q cons: [a b] uimplies: supposing a ge: i ≥  le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False prop: top: Top guard: {T} decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B less_than': less_than'(a;b) true: True
Lemmas referenced :  list-cases product_subtype_list less_than'_wf length_wf not_wf equal_wf list_wf nil_wf length_of_cons_lemma cons_wf non_neg_length decidable__le false_wf not-ge-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-associates add-commutes add_functionality_wrt_le add-zero le-add-cancel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination unionElimination promote_hyp hypothesis_subsumption productElimination sqequalRule isect_memberEquality independent_pairEquality lambdaEquality because_Cache natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry voidElimination universeEquality independent_functionElimination voidEquality addEquality independent_pairFormation lambdaFormation independent_isectElimination applyEquality intEquality minusEquality

Latex:
\mforall{}[A:Type].  \mforall{}[l:A  List].    ||l||  \mgeq{}  1    supposing  \mneg{}(l  =  [])



Date html generated: 2016_05_14-AM-06_33_49
Last ObjectModification: 2015_12_26-PM-00_36_55

Theory : list_0


Home Index