Nuprl Lemma : pos_length
∀[A:Type]. ∀[l:A List].  ||l|| ≥ 1  supposing ¬(l = [] ∈ (A List))
Proof
Definitions occuring in Statement : 
length: ||as||, 
nil: [], 
list: T List, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
ge: i ≥ j , 
not: ¬A, 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
or: P ∨ Q, 
cons: [a / b], 
uimplies: b supposing a, 
ge: i ≥ j , 
le: A ≤ B, 
and: P ∧ Q, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
top: Top, 
guard: {T}, 
decidable: Dec(P), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
subtract: n - m, 
subtype_rel: A ⊆r B, 
less_than': less_than'(a;b), 
true: True
Lemmas referenced : 
list-cases, 
product_subtype_list, 
less_than'_wf, 
length_wf, 
not_wf, 
equal_wf, 
list_wf, 
nil_wf, 
length_of_cons_lemma, 
cons_wf, 
non_neg_length, 
decidable__le, 
false_wf, 
not-ge-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-associates, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
sqequalRule, 
isect_memberEquality, 
independent_pairEquality, 
lambdaEquality, 
because_Cache, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
universeEquality, 
independent_functionElimination, 
voidEquality, 
addEquality, 
independent_pairFormation, 
lambdaFormation, 
independent_isectElimination, 
applyEquality, 
intEquality, 
minusEquality
Latex:
\mforall{}[A:Type].  \mforall{}[l:A  List].    ||l||  \mgeq{}  1    supposing  \mneg{}(l  =  [])
Date html generated:
2016_05_14-AM-06_33_49
Last ObjectModification:
2015_12_26-PM-00_36_55
Theory : list_0
Home
Index