Nuprl Lemma : uniform-Kan-A-filler_wf
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[filler:I:(Cname List)
                                        ⟶ alpha:X(I)
                                        ⟶ J:(nameset(I) List)
                                        ⟶ x:nameset(I)
                                        ⟶ i:ℕ2
                                        ⟶ A-open-box(X;A;I;alpha;J;x;i)
                                        ⟶ A(alpha)].
  (uniform-Kan-A-filler(X;A;filler) ∈ ℙ)
Proof
Definitions occuring in Statement : 
uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler)
, 
A-open-box: A-open-box(X;A;I;alpha;J;x;i)
, 
cubical-type-at: A(a)
, 
cubical-type: {X ⊢ _}
, 
I-cube: X(I)
, 
cubical-set: CubicalSet
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler)
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
nameset: nameset(L)
, 
uimplies: b supposing a
, 
name-morph: name-morph(I;J)
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
A-open-box: A-open-box(X;A;I;alpha;J;x;i)
, 
name-morph-domain: name-morph-domain(f;I)
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
sq_type: SQType(T)
, 
guard: {T}
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
l_subset: l_subset(T;as;bs)
Lemmas referenced : 
all_wf, 
list_wf, 
coordinate_name_wf, 
I-cube_wf, 
nameset_wf, 
int_seg_wf, 
A-open-box_wf, 
name-morph_wf, 
l_member_wf, 
subtype_rel_list, 
assert_wf, 
isname_wf, 
cubical-type-at_wf, 
cubical-type_wf, 
cubical-set_wf, 
assert-isname, 
cons_member, 
member_filter_2, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
and_wf, 
equal_wf, 
extd-nameset_wf, 
assert_elim, 
bool_wf, 
bool_subtype_base, 
filter_wf5, 
cons_wf, 
list-subtype, 
map_wf, 
cube-set-restriction_wf, 
cubical-type-ap-morph_wf, 
A-open-box-image_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
natural_numberEquality, 
dependent_functionElimination, 
applyEquality, 
because_Cache, 
functionEquality, 
setElimination, 
rename, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
productElimination, 
dependent_set_memberEquality, 
independent_functionElimination, 
unionElimination, 
setEquality, 
instantiate, 
independent_pairFormation, 
applyLambdaEquality, 
cumulativity, 
lambdaFormation, 
functionExtensionality
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[filler:I:(Cname  List)
                                                                                {}\mrightarrow{}  alpha:X(I)
                                                                                {}\mrightarrow{}  J:(nameset(I)  List)
                                                                                {}\mrightarrow{}  x:nameset(I)
                                                                                {}\mrightarrow{}  i:\mBbbN{}2
                                                                                {}\mrightarrow{}  A-open-box(X;A;I;alpha;J;x;i)
                                                                                {}\mrightarrow{}  A(alpha)].
    (uniform-Kan-A-filler(X;A;filler)  \mmember{}  \mBbbP{})
Date html generated:
2017_10_05-AM-10_23_25
Last ObjectModification:
2017_07_28-AM-11_21_54
Theory : cubical!sets
Home
Index