Nuprl Lemma : uniform-Kan-A-filler_wf

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[filler:I:(Cname List)
                                        ⟶ alpha:X(I)
                                        ⟶ J:(nameset(I) List)
                                        ⟶ x:nameset(I)
                                        ⟶ i:ℕ2
                                        ⟶ A-open-box(X;A;I;alpha;J;x;i)
                                        ⟶ A(alpha)].
  (uniform-Kan-A-filler(X;A;filler) ∈ ℙ)


Proof




Definitions occuring in Statement :  uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler) A-open-box: A-open-box(X;A;I;alpha;J;x;i) cubical-type-at: A(a) cubical-type: {X ⊢ _} I-cube: X(I) cubical-set: CubicalSet nameset: nameset(L) coordinate_name: Cname list: List int_seg: {i..j-} uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler) so_lambda: λ2x.t[x] all: x:A. B[x] subtype_rel: A ⊆B implies:  Q prop: nameset: nameset(L) uimplies: supposing a name-morph: name-morph(I;J) so_apply: x[s] uiff: uiff(P;Q) and: P ∧ Q A-open-box: A-open-box(X;A;I;alpha;J;x;i) name-morph-domain: name-morph-domain(f;I) iff: ⇐⇒ Q or: P ∨ Q rev_implies:  Q cand: c∧ B coordinate_name: Cname int_upper: {i...} sq_type: SQType(T) guard: {T} assert: b ifthenelse: if then else fi  btrue: tt true: True l_subset: l_subset(T;as;bs)
Lemmas referenced :  all_wf list_wf coordinate_name_wf I-cube_wf nameset_wf int_seg_wf A-open-box_wf name-morph_wf l_member_wf subtype_rel_list assert_wf isname_wf cubical-type-at_wf cubical-type_wf cubical-set_wf assert-isname cons_member member_filter_2 subtype_base_sq set_subtype_base int_subtype_base and_wf equal_wf extd-nameset_wf assert_elim bool_wf bool_subtype_base filter_wf5 cons_wf list-subtype map_wf cube-set-restriction_wf cubical-type-ap-morph_wf A-open-box-image_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality hypothesisEquality natural_numberEquality dependent_functionElimination applyEquality because_Cache functionEquality setElimination rename independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality productElimination dependent_set_memberEquality independent_functionElimination unionElimination setEquality instantiate independent_pairFormation applyLambdaEquality cumulativity lambdaFormation functionExtensionality

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[filler:I:(Cname  List)
                                                                                {}\mrightarrow{}  alpha:X(I)
                                                                                {}\mrightarrow{}  J:(nameset(I)  List)
                                                                                {}\mrightarrow{}  x:nameset(I)
                                                                                {}\mrightarrow{}  i:\mBbbN{}2
                                                                                {}\mrightarrow{}  A-open-box(X;A;I;alpha;J;x;i)
                                                                                {}\mrightarrow{}  A(alpha)].
    (uniform-Kan-A-filler(X;A;filler)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_05-AM-10_23_25
Last ObjectModification: 2017_07_28-AM-11_21_54

Theory : cubical!sets


Home Index