Nuprl Lemma : filter_wf5

[T:Type]. ∀[l:T List]. ∀[P:{x:T| (x ∈ l)}  ⟶ 𝔹].  (filter(P;l) ∈ List)


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) filter: filter(P;l) list: List bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  l_member_wf bool_wf list_wf filter_wf list-subtype subtype_rel_list
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry functionEquality setEquality hypothesisEquality lemma_by_obid isectElimination thin isect_memberEquality because_Cache universeEquality cumulativity applyEquality independent_isectElimination lambdaEquality setElimination rename

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  l)\}    {}\mrightarrow{}  \mBbbB{}].    (filter(P;l)  \mmember{}  T  List)



Date html generated: 2016_05_14-AM-06_39_43
Last ObjectModification: 2015_12_26-PM-00_31_49

Theory : list_0


Home Index