Nuprl Lemma : A-open-box-image_wf
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[I,J,K:Cname List]. ∀[alpha:X(I)]. ∀[f:name-morph(I;K)]. ∀[x:nameset(I)]. ∀[i:ℕ2].
  ∀[bx:A-open-box(X;A;I;alpha;J;x;i)]
    (A-open-box-image(X;A;I;K;f;alpha;bx) ∈ A-open-box(X;A;K;f(alpha);map(f;J);f x;i)) 
  supposing nameset([x / J]) ⊆r name-morph-domain(f;I)
Proof
Definitions occuring in Statement : 
A-open-box-image: A-open-box-image(X;A;I;K;f;alpha;bx), 
A-open-box: A-open-box(X;A;I;alpha;J;x;i), 
cubical-type: {X ⊢ _}, 
cube-set-restriction: f(s), 
I-cube: X(I), 
cubical-set: CubicalSet, 
name-morph-domain: name-morph-domain(f;I), 
name-morph: name-morph(I;J), 
nameset: nameset(L), 
coordinate_name: Cname, 
map: map(f;as), 
cons: [a / b], 
list: T List, 
int_seg: {i..j-}, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
apply: f a, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
name-morph-domain: name-morph-domain(f;I), 
nameset: nameset(L), 
name-morph: name-morph(I;J), 
prop: ℙ, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
guard: {T}, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uiff: uiff(P;Q), 
A-open-box: A-open-box(X;A;I;alpha;J;x;i), 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
l_member: (x ∈ l), 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
coordinate_name: Cname, 
int_upper: {i...}, 
sq_type: SQType(T), 
nat: ℕ, 
squash: ↓T, 
sq_stable: SqStable(P), 
ge: i ≥ j , 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
not: ¬A, 
top: Top, 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
A-face: A-face(X;A;I;alpha), 
pi1: fst(t), 
isname: isname(z), 
le_int: i ≤z j, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
lt_int: i <z j, 
true: True, 
A-open-box-image: A-open-box-image(X;A;I;K;f;alpha;bx), 
A-adjacent-compatible: A-adjacent-compatible(X;A;I;alpha;L), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
pairwise: (∀x,y∈L.  P[x; y]), 
less_than: a < b, 
rev_uimplies: rev_uimplies(P;Q), 
l_subset: l_subset(T;as;bs), 
l_exists: (∃x∈L. P[x]), 
pi2: snd(t), 
A-face-name: A-face-name(f), 
A-face-image: A-face-image(X;A;I;K;f;alpha;face), 
spreadn: spread3
Lemmas referenced : 
name-morph-domain_wf, 
member_filter_2, 
coordinate_name_wf, 
isname_wf, 
l_member_wf, 
assert-isname, 
subtype_rel_sets, 
filter_wf5, 
equal_wf, 
nameset_wf, 
cons_wf, 
nameset_subtype, 
l_subset_right_cons_trivial, 
list-subtype, 
list_wf, 
map_wf, 
cons_member, 
subtype_base_sq, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
select_wf, 
sq_stable__le, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
subtype_rel_list, 
A-open-box_wf, 
subtype_rel_wf, 
int_seg_wf, 
name-morph_wf, 
I-cube_wf, 
cubical-type_wf, 
cubical-set_wf, 
lelt_wf, 
length_wf, 
A-face_wf, 
not_wf, 
A-face-name_wf, 
subtract_wf, 
int_seg_properties, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
itermSubtract_wf, 
intformless_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_less_lemma, 
decidable__lt, 
sq_stable__assert, 
squash_wf, 
true_wf, 
pi1_wf_top, 
top_wf, 
subtype_rel_product, 
cubical-type-at_wf, 
list-diff_wf, 
cname_deq_wf, 
nil_wf, 
cube-set-restriction_wf, 
face-map_wf2, 
iff_weakening_equal, 
A-face-image_wf, 
pairwise-map, 
A-face-compatible_wf, 
A-face-compatible-image, 
select_member, 
member-map, 
assert_of_le_int, 
nameset_subtype_extd-nameset, 
nameset_subtype_base, 
l_member_subtype, 
assert_wf, 
eq-cname_wf, 
decidable__l_exists_better-extract, 
decidable__assert, 
assert-eq-cname, 
length-map, 
select-map, 
A-face-name-image, 
product_subtype_base, 
pi2_wf, 
and_wf, 
isname-nameset, 
assert_of_tt, 
equal_functionality_wrt_subtype_rel2, 
extd-nameset_wf, 
map_cons_lemma, 
length_of_cons_lemma, 
length-map-sq, 
A-adjacent-compatible_wf, 
l_subset_wf, 
all_wf, 
l_exists_wf, 
l_all_wf2, 
pairwise_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalHypSubstitution, 
sqequalRule, 
thin, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
dependent_functionElimination, 
lambdaEquality, 
setEquality, 
productElimination, 
independent_functionElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
promote_hyp, 
functionExtensionality, 
voidElimination, 
voidEquality, 
inlFormation, 
dependent_set_memberEquality, 
instantiate, 
cumulativity, 
intEquality, 
natural_numberEquality, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
independent_pairFormation, 
computeAll, 
axiomEquality, 
hyp_replacement, 
productEquality, 
independent_pairEquality, 
universeEquality, 
equalityElimination, 
addEquality, 
comment
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[I,J,K:Cname  List].  \mforall{}[alpha:X(I)].  \mforall{}[f:name-morph(I;K)].
\mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
    \mforall{}[bx:A-open-box(X;A;I;alpha;J;x;i)]
        (A-open-box-image(X;A;I;K;f;alpha;bx)  \mmember{}  A-open-box(X;A;K;f(alpha);map(f;J);f  x;i)) 
    supposing  nameset([x  /  J])  \msubseteq{}r  name-morph-domain(f;I)
Date html generated:
2017_10_05-AM-10_23_11
Last ObjectModification:
2017_07_28-AM-11_21_46
Theory : cubical!sets
Home
Index