Nuprl Lemma : A-face-name-image
∀X:CubicalSet. ∀A:{X ⊢ _}. ∀I:Cname List. ∀alpha:X(I). ∀K,f:Top. ∀face:A-face(X;A;I;alpha).
  (A-face-name(A-face-image(X;A;I;K;f;alpha;face)) ~ (λp.<f (fst(p)), snd(p)>) A-face-name(face))
Proof
Definitions occuring in Statement : 
A-face-image: A-face-image(X;A;I;K;f;alpha;face), 
A-face-name: A-face-name(f), 
A-face: A-face(X;A;I;alpha), 
cubical-type: {X ⊢ _}, 
I-cube: X(I), 
cubical-set: CubicalSet, 
coordinate_name: Cname, 
list: T List, 
top: Top, 
pi1: fst(t), 
pi2: snd(t), 
all: ∀x:A. B[x], 
apply: f a, 
lambda: λx.A[x], 
pair: <a, b>, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
A-face: A-face(X;A;I;alpha), 
A-face-name: A-face-name(f), 
A-face-image: A-face-image(X;A;I;K;f;alpha;face), 
spreadn: spread3, 
pi1: fst(t), 
pi2: snd(t), 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
A-face_wf, 
top_wf, 
I-cube_wf, 
list_wf, 
coordinate_name_wf, 
cubical-type_wf, 
cubical-set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
because_Cache
Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}I:Cname  List.  \mforall{}alpha:X(I).  \mforall{}K,f:Top.  \mforall{}face:A-face(X;A;I;alpha).
    (A-face-name(A-face-image(X;A;I;K;f;alpha;face))  \msim{}  (\mlambda{}p.<f  (fst(p)),  snd(p)>)  A-face-name(face))
Date html generated:
2016_06_16-PM-05_54_01
Last ObjectModification:
2015_12_28-PM-04_29_16
Theory : cubical!sets
Home
Index