Nuprl Lemma : A-adjacent-compatible_wf
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[I:Cname List]. ∀[alpha:X(I)]. ∀[L:A-face(X;A;I;alpha) List].
  (A-adjacent-compatible(X;A;I;alpha;L) ∈ ℙ)
Proof
Definitions occuring in Statement : 
A-adjacent-compatible: A-adjacent-compatible(X;A;I;alpha;L)
, 
A-face: A-face(X;A;I;alpha)
, 
cubical-type: {X ⊢ _}
, 
I-cube: X(I)
, 
cubical-set: CubicalSet
, 
coordinate_name: Cname
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
A-adjacent-compatible: A-adjacent-compatible(X;A;I;alpha;L)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
pairwise_wf2, 
A-face_wf, 
A-face-compatible_wf, 
list_wf, 
I-cube_wf, 
coordinate_name_wf, 
cubical-type_wf, 
cubical-set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[I:Cname  List].  \mforall{}[alpha:X(I)].  \mforall{}[L:A-face(X;A;I;alpha)  List].
    (A-adjacent-compatible(X;A;I;alpha;L)  \mmember{}  \mBbbP{})
Date html generated:
2016_06_16-PM-05_50_32
Last ObjectModification:
2015_12_28-PM-04_30_13
Theory : cubical!sets
Home
Index