Nuprl Lemma : A-adjacent-compatible_wf

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[I:Cname List]. ∀[alpha:X(I)]. ∀[L:A-face(X;A;I;alpha) List].
  (A-adjacent-compatible(X;A;I;alpha;L) ∈ ℙ)


Proof




Definitions occuring in Statement :  A-adjacent-compatible: A-adjacent-compatible(X;A;I;alpha;L) A-face: A-face(X;A;I;alpha) cubical-type: {X ⊢ _} I-cube: X(I) cubical-set: CubicalSet coordinate_name: Cname list: List uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T A-adjacent-compatible: A-adjacent-compatible(X;A;I;alpha;L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  pairwise_wf2 A-face_wf A-face-compatible_wf list_wf I-cube_wf coordinate_name_wf cubical-type_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[I:Cname  List].  \mforall{}[alpha:X(I)].  \mforall{}[L:A-face(X;A;I;alpha)  List].
    (A-adjacent-compatible(X;A;I;alpha;L)  \mmember{}  \mBbbP{})



Date html generated: 2016_06_16-PM-05_50_32
Last ObjectModification: 2015_12_28-PM-04_30_13

Theory : cubical!sets


Home Index