Nuprl Lemma : A-face-compatible-image

X:CubicalSet. ∀A:{X ⊢ _}. ∀I,K:Cname List. ∀f:name-morph(I;K). ∀alpha:X(I). ∀fc1,fc2:A-face(X;A;I;alpha).
  ((↑isname(f (fst(fc1))))
   (↑isname(f (fst(fc2))))
   A-face-compatible(X;A;I;alpha;fc1;fc2)
   A-face-compatible(X;A;K;f(alpha);A-face-image(X;A;I;K;f;alpha;fc1);A-face-image(X;A;I;K;f;alpha;fc2)))


Proof




Definitions occuring in Statement :  A-face-image: A-face-image(X;A;I;K;f;alpha;face) A-face-compatible: A-face-compatible(X;A;I;alpha;f1;f2) A-face: A-face(X;A;I;alpha) cubical-type: {X ⊢ _} cube-set-restriction: f(s) I-cube: X(I) cubical-set: CubicalSet name-morph: name-morph(I;J) isname: isname(z) coordinate_name: Cname list: List assert: b pi1: fst(t) all: x:A. B[x] implies:  Q apply: a
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q A-face: A-face(X;A;I;alpha) A-face-compatible: A-face-compatible(X;A;I;alpha;f1;f2) spreadn: spread3 A-face-image: A-face-image(X;A;I;K;f;alpha;face) pi1: fst(t) uall: [x:A]. B[x] member: t ∈ T name-morph: name-morph(I;J) uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A subtype_rel: A ⊆B guard: {T} nameset: nameset(L) false: False prop: top: Top coordinate_name: Cname int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B squash: T int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] true: True
Lemmas referenced :  assert-isname coordinate_name_wf istype-void A-face-compatible_wf istype-assert isname_wf pi1_wf_top nameset_wf A-face_wf I-cube_wf name-morph_wf list_wf cubical-type_wf cubical-set_wf subtype_base_sq set_subtype_base le_wf istype-int int_subtype_base istype-le member-list-diff cname_deq_wf cons_wf nil_wf int_seg_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf member_singleton l_member_wf list-diff_wf name-morph_subtype_remove1 cubical-type-ap-morph-comp cube-set-restriction_wf face-map_wf2 subtype_rel_self subtype_rel_wf squash_wf true_wf list-diff2 iff_weakening_equal list-diff2-sym equal_wf istype-universe cubical-type-at_wf name-comp_wf cube-set-restriction-comp face-maps-commute list-diff-subset nameset_subtype face-map-comp name-comp-assoc subtype_rel-equal cubical-type-ap-morph_wf not_wf ext-eq_weakening subtype_rel_weakening face-map-comp2 trivial-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin sqequalRule rename cut introduction extract_by_obid isectElimination hypothesisEquality applyEquality setElimination hypothesis independent_isectElimination because_Cache functionIsType equalityIsType1 universeIsType equalityTransitivity equalitySymmetry lambdaEquality_alt inhabitedIsType independent_pairEquality isect_memberEquality_alt voidElimination independent_functionElimination instantiate cumulativity intEquality closedConclusion natural_numberEquality dependent_functionElimination dependent_set_memberEquality_alt independent_pairFormation applyLambdaEquality imageMemberEquality baseClosed imageElimination approximateComputation dependent_pairFormation_alt int_eqEquality hyp_replacement equalityIsType4 promote_hyp lambdaEquality universeEquality productEquality addLevel dependent_set_memberEquality voidEquality isect_memberEquality dependent_pairFormation lambdaFormation

Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}I,K:Cname  List.  \mforall{}f:name-morph(I;K).  \mforall{}alpha:X(I).
\mforall{}fc1,fc2:A-face(X;A;I;alpha).
    ((\muparrow{}isname(f  (fst(fc1))))
    {}\mRightarrow{}  (\muparrow{}isname(f  (fst(fc2))))
    {}\mRightarrow{}  A-face-compatible(X;A;I;alpha;fc1;fc2)
    {}\mRightarrow{}  A-face-compatible(X;A;K;f(alpha);A-face-image(X;A;I;K;f;alpha;fc1);...))



Date html generated: 2019_11_05-PM-00_27_59
Last ObjectModification: 2018_11_08-PM-02_38_28

Theory : cubical!sets


Home Index