Nuprl Lemma : A-face-compatible-image
∀X:CubicalSet. ∀A:{X ⊢ _}. ∀I,K:Cname List. ∀f:name-morph(I;K). ∀alpha:X(I). ∀fc1,fc2:A-face(X;A;I;alpha).
  ((↑isname(f (fst(fc1))))
  ⇒ (↑isname(f (fst(fc2))))
  ⇒ A-face-compatible(X;A;I;alpha;fc1;fc2)
  ⇒ A-face-compatible(X;A;K;f(alpha);A-face-image(X;A;I;K;f;alpha;fc1);A-face-image(X;A;I;K;f;alpha;fc2)))
Proof
Definitions occuring in Statement : 
A-face-image: A-face-image(X;A;I;K;f;alpha;face), 
A-face-compatible: A-face-compatible(X;A;I;alpha;f1;f2), 
A-face: A-face(X;A;I;alpha), 
cubical-type: {X ⊢ _}, 
cube-set-restriction: f(s), 
I-cube: X(I), 
cubical-set: CubicalSet, 
name-morph: name-morph(I;J), 
isname: isname(z), 
coordinate_name: Cname, 
list: T List, 
assert: ↑b, 
pi1: fst(t), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
A-face: A-face(X;A;I;alpha), 
A-face-compatible: A-face-compatible(X;A;I;alpha;f1;f2), 
spreadn: spread3, 
A-face-image: A-face-image(X;A;I;K;f;alpha;face), 
pi1: fst(t), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
name-morph: name-morph(I;J), 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
not: ¬A, 
subtype_rel: A ⊆r B, 
guard: {T}, 
nameset: nameset(L), 
false: False, 
prop: ℙ, 
top: Top, 
coordinate_name: Cname, 
int_upper: {i...}, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_type: SQType(T), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
squash: ↓T, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
true: True
Lemmas referenced : 
assert-isname, 
coordinate_name_wf, 
istype-void, 
A-face-compatible_wf, 
istype-assert, 
isname_wf, 
pi1_wf_top, 
nameset_wf, 
A-face_wf, 
I-cube_wf, 
name-morph_wf, 
list_wf, 
cubical-type_wf, 
cubical-set_wf, 
subtype_base_sq, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
istype-le, 
member-list-diff, 
cname_deq_wf, 
cons_wf, 
nil_wf, 
int_seg_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
member_singleton, 
l_member_wf, 
list-diff_wf, 
name-morph_subtype_remove1, 
cubical-type-ap-morph-comp, 
cube-set-restriction_wf, 
face-map_wf2, 
subtype_rel_self, 
subtype_rel_wf, 
squash_wf, 
true_wf, 
list-diff2, 
iff_weakening_equal, 
list-diff2-sym, 
equal_wf, 
istype-universe, 
cubical-type-at_wf, 
name-comp_wf, 
cube-set-restriction-comp, 
face-maps-commute, 
list-diff-subset, 
nameset_subtype, 
face-map-comp, 
name-comp-assoc, 
subtype_rel-equal, 
cubical-type-ap-morph_wf, 
not_wf, 
ext-eq_weakening, 
subtype_rel_weakening, 
face-map-comp2, 
trivial-equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
rename, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
setElimination, 
hypothesis, 
independent_isectElimination, 
because_Cache, 
functionIsType, 
equalityIsType1, 
universeIsType, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
inhabitedIsType, 
independent_pairEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_functionElimination, 
instantiate, 
cumulativity, 
intEquality, 
closedConclusion, 
natural_numberEquality, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
hyp_replacement, 
equalityIsType4, 
promote_hyp, 
lambdaEquality, 
universeEquality, 
productEquality, 
addLevel, 
dependent_set_memberEquality, 
voidEquality, 
isect_memberEquality, 
dependent_pairFormation, 
lambdaFormation
Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}I,K:Cname  List.  \mforall{}f:name-morph(I;K).  \mforall{}alpha:X(I).
\mforall{}fc1,fc2:A-face(X;A;I;alpha).
    ((\muparrow{}isname(f  (fst(fc1))))
    {}\mRightarrow{}  (\muparrow{}isname(f  (fst(fc2))))
    {}\mRightarrow{}  A-face-compatible(X;A;I;alpha;fc1;fc2)
    {}\mRightarrow{}  A-face-compatible(X;A;K;f(alpha);A-face-image(X;A;I;K;f;alpha;fc1);...))
 Date html generated: 
2019_11_05-PM-00_27_59
 Last ObjectModification: 
2018_11_08-PM-02_38_28
Theory : cubical!sets
Home
Index