Nuprl Lemma : face-map-comp

A,B:Cname List. ∀g:name-morph(A;B). ∀x:nameset(A). ∀i:ℕ2.
  (g (g x:=i)) ((x:=i) g) ∈ name-morph(A;B-[g x]) supposing ↑isname(g x)


Proof




Definitions occuring in Statement :  name-comp: (f g) face-map: (x:=i) name-morph: name-morph(I;J) isname: isname(z) nameset: nameset(L) cname_deq: CnameDeq coordinate_name: Cname list-diff: as-bs cons: [a b] nil: [] list: List int_seg: {i..j-} assert: b uimplies: supposing a all: x:A. B[x] apply: a natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T name-morph: name-morph(I;J) uiff: uiff(P;Q) and: P ∧ Q subtype_rel: A ⊆B guard: {T} nameset: nameset(L) face-map: (x:=i) name-comp: (f g) uext: uext(g) compose: g coordinate_name: Cname int_upper: {i...} implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False isname: isname(z) int_seg: {i..j-} prop: iff: ⇐⇒ Q rev_implies:  Q lelt: i ≤ j < k not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top true: True decidable: Dec(P) squash: T cand: c∧ B nequal: a ≠ b ∈  so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  assert-isname istype-assert isname_wf int_seg_wf nameset_wf name-morph_wf name-morphs-equal list-diff_wf coordinate_name_wf cname_deq_wf cons_wf nil_wf name-comp_wf face-map_wf2 eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf assert-bnot neg_assert_of_eq_int iff_imp_equal_bool le_int_wf bfalse_wf iff_functionality_wrt_iff assert_wf le_wf false_wf iff_weakening_uiff assert_of_le_int iff_weakening_equal int_seg_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le nsub2_subtype_extd-nameset btrue_wf true_wf decidable__assert not-assert-isname member-list-diff member_singleton l_member_wf nameset_subtype_extd-nameset nameset_subtype_base decidable__equal_int intformnot_wf intformeq_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma set_subtype_base int_subtype_base equal_wf squash_wf istype-universe eq_int_eq_true extd-nameset_subtype_int subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality setElimination rename because_Cache hypothesis productElimination independent_isectElimination universeIsType natural_numberEquality equalityTransitivity equalitySymmetry lambdaEquality_alt inhabitedIsType sqequalRule unionElimination equalityElimination dependent_pairFormation_alt equalityIsType3 promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination equalityIsType1 independent_pairFormation approximateComputation int_eqEquality isect_memberEquality_alt applyLambdaEquality imageMemberEquality baseClosed imageElimination dependent_set_memberEquality_alt intEquality closedConclusion universeEquality

Latex:
\mforall{}A,B:Cname  List.  \mforall{}g:name-morph(A;B).  \mforall{}x:nameset(A).  \mforall{}i:\mBbbN{}2.
    (g  o  (g  x:=i))  =  ((x:=i)  o  g)  supposing  \muparrow{}isname(g  x)



Date html generated: 2019_11_05-PM-00_24_42
Last ObjectModification: 2018_11_08-PM-00_27_32

Theory : cubical!sets


Home Index