Nuprl Lemma : face-map-comp
∀A,B:Cname List. ∀g:name-morph(A;B). ∀x:nameset(A). ∀i:ℕ2.
  (g o (g x:=i)) = ((x:=i) o g) ∈ name-morph(A;B-[g x]) supposing ↑isname(g x)
Proof
Definitions occuring in Statement : 
name-comp: (f o g)
, 
face-map: (x:=i)
, 
name-morph: name-morph(I;J)
, 
isname: isname(z)
, 
nameset: nameset(L)
, 
cname_deq: CnameDeq
, 
coordinate_name: Cname
, 
list-diff: as-bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
name-morph: name-morph(I;J)
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
nameset: nameset(L)
, 
face-map: (x:=i)
, 
name-comp: (f o g)
, 
uext: uext(g)
, 
compose: f o g
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
isname: isname(z)
, 
int_seg: {i..j-}
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
lelt: i ≤ j < k
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
true: True
, 
decidable: Dec(P)
, 
squash: ↓T
, 
cand: A c∧ B
, 
nequal: a ≠ b ∈ T 
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
assert-isname, 
istype-assert, 
isname_wf, 
int_seg_wf, 
nameset_wf, 
name-morph_wf, 
name-morphs-equal, 
list-diff_wf, 
coordinate_name_wf, 
cname_deq_wf, 
cons_wf, 
nil_wf, 
name-comp_wf, 
face-map_wf2, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
assert-bnot, 
neg_assert_of_eq_int, 
iff_imp_equal_bool, 
le_int_wf, 
bfalse_wf, 
iff_functionality_wrt_iff, 
assert_wf, 
le_wf, 
false_wf, 
iff_weakening_uiff, 
assert_of_le_int, 
iff_weakening_equal, 
int_seg_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
nsub2_subtype_extd-nameset, 
btrue_wf, 
true_wf, 
decidable__assert, 
not-assert-isname, 
member-list-diff, 
member_singleton, 
l_member_wf, 
nameset_subtype_extd-nameset, 
nameset_subtype_base, 
decidable__equal_int, 
intformnot_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
equal_wf, 
squash_wf, 
istype-universe, 
eq_int_eq_true, 
extd-nameset_subtype_int, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
productElimination, 
independent_isectElimination, 
universeIsType, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
inhabitedIsType, 
sqequalRule, 
unionElimination, 
equalityElimination, 
dependent_pairFormation_alt, 
equalityIsType3, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
equalityIsType1, 
independent_pairFormation, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality_alt, 
intEquality, 
closedConclusion, 
universeEquality
Latex:
\mforall{}A,B:Cname  List.  \mforall{}g:name-morph(A;B).  \mforall{}x:nameset(A).  \mforall{}i:\mBbbN{}2.
    (g  o  (g  x:=i))  =  ((x:=i)  o  g)  supposing  \muparrow{}isname(g  x)
Date html generated:
2019_11_05-PM-00_24_42
Last ObjectModification:
2018_11_08-PM-00_27_32
Theory : cubical!sets
Home
Index