Nuprl Lemma : face-maps-commute

I:Cname List. ∀x:nameset(I). ∀i:ℕ2. ∀y:nameset(I). ∀j:ℕ2.
  ((¬(x y ∈ Cname))  (((x:=i) (y:=j)) ((y:=j) (x:=i)) ∈ name-morph(I;I-[x; y])))


Proof




Definitions occuring in Statement :  name-comp: (f g) face-map: (x:=i) name-morph: name-morph(I;J) nameset: nameset(L) cname_deq: CnameDeq coordinate_name: Cname list-diff: as-bs cons: [a b] nil: [] list: List int_seg: {i..j-} all: x:A. B[x] not: ¬A implies:  Q natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] nameset: nameset(L) subtype_rel: A ⊆B not: ¬A false: False true: True squash: T prop: uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q name-morph: name-morph(I;J) face-map: (x:=i) name-comp: (f g) compose: g uext: uext(g) coordinate_name: Cname int_upper: {i...} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] sq_type: SQType(T) decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) top: Top bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈  sq_stable: SqStable(P) isname: isname(z) cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  face-map_wf2 list-diff_wf coordinate_name_wf cname_deq_wf cons_wf nil_wf istype-void int_seg_wf nameset_wf name-morph_wf subtype_rel_wf squash_wf true_wf istype-universe list-diff2 iff_weakening_equal name-morphs-equal name-comp_wf list_wf list-diff2-sym eq_int_wf int_seg_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf intformle_wf itermConstant_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf intformnot_wf int_formula_prop_not_lemma subtype_base_sq int_subtype_base decidable__equal_int istype-le eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int bool_wf le_int_wf assert_of_le_int iff_weakening_uiff assert_wf le_wf nsub2_subtype_extd-nameset iff_imp_equal_bool btrue_wf iff_functionality_wrt_iff istype-true l_member_wf member-list-diff member_singleton cons_member set_subtype_base nameset_subtype_extd-nameset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality setElimination rename applyEquality sqequalRule functionIsType equalityIstype universeIsType inhabitedIsType natural_numberEquality because_Cache lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry instantiate universeEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination functionExtensionality_alt approximateComputation dependent_pairFormation_alt int_eqEquality dependent_functionElimination Error :memTop,  independent_pairFormation voidElimination cumulativity intEquality unionElimination dependent_set_memberEquality_alt equalityElimination isect_memberEquality_alt promote_hyp inlFormation_alt applyLambdaEquality inrFormation_alt unionIsType

Latex:
\mforall{}I:Cname  List.  \mforall{}x:nameset(I).  \mforall{}i:\mBbbN{}2.  \mforall{}y:nameset(I).  \mforall{}j:\mBbbN{}2.
    ((\mneg{}(x  =  y))  {}\mRightarrow{}  (((x:=i)  o  (y:=j))  =  ((y:=j)  o  (x:=i))))



Date html generated: 2020_05_21-AM-10_48_50
Last ObjectModification: 2019_12_08-PM-07_06_37

Theory : cubical!sets


Home Index