Nuprl Lemma : list-diff2-sym

[T:Type]. ∀[eq:EqDecider(T)]. ∀[as:T List]. ∀[b,c:T].  (as-[b; c] as-[c]-[b] ∈ (T List))


Proof




Definitions occuring in Statement :  list-diff: as-bs cons: [a b] nil: [] list: List deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] or: P ∨ Q
Lemmas referenced :  equal_wf squash_wf true_wf list-diff_wf cons_wf nil_wf list-diff-diff iff_weakening_equal list_ind_cons_lemma list_ind_nil_lemma list-diff_functionality cons_member member_singleton or_wf l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry because_Cache cumulativity natural_numberEquality sqequalRule imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality axiomEquality lambdaFormation independent_pairFormation addLevel orFunctionality promote_hyp unionElimination inrFormation inlFormation

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as:T  List].  \mforall{}[b,c:T].    (as-[b;  c]  =  as-[c]-[b])



Date html generated: 2017_04_17-AM-09_13_12
Last ObjectModification: 2017_02_27-PM-05_19_54

Theory : decidable!equality


Home Index