Nuprl Lemma : list-diff_functionality

[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs,cs:T List].
  as-bs as-cs ∈ (T List) supposing ∀x:T. ((x ∈ as)  ((x ∈ bs) ⇐⇒ (x ∈ cs)))


Proof




Definitions occuring in Statement :  list-diff: as-bs l_member: (x ∈ l) list: List deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a list-diff: as-bs all: x:A. B[x] implies:  Q prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q squash: T subtype_rel: A ⊆B not: ¬A false: False true: True guard: {T}
Lemmas referenced :  list-subtype l_member_wf filter_wf5 squash_wf true_wf bool_wf list_wf istype-universe subtype_rel_list iff_imp_equal_bool bnot_wf deq-member_wf istype-void iff_transitivity assert_wf not_wf iff_weakening_uiff assert_of_bnot assert-deq-member istype-assert
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType lambdaFormation_alt equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination sqequalRule functionIsType universeIsType productIsType because_Cache isect_memberEquality_alt axiomEquality isectIsTypeImplies applyEquality lambdaEquality_alt imageElimination setIsType instantiate universeEquality setEquality independent_isectElimination setElimination rename independent_pairFormation voidElimination productElimination promote_hyp natural_numberEquality imageMemberEquality baseClosed hyp_replacement dependent_set_memberEquality_alt applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs,cs:T  List].
    as-bs  =  as-cs  supposing  \mforall{}x:T.  ((x  \mmember{}  as)  {}\mRightarrow{}  ((x  \mmember{}  bs)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  cs)))



Date html generated: 2020_05_19-PM-09_52_33
Last ObjectModification: 2020_01_04-PM-08_00_00

Theory : decidable!equality


Home Index