Nuprl Lemma : list-diff_functionality
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs,cs:T List].
  as-bs = as-cs ∈ (T List) supposing ∀x:T. ((x ∈ as) 
⇒ ((x ∈ bs) 
⇐⇒ (x ∈ cs)))
Proof
Definitions occuring in Statement : 
list-diff: as-bs
, 
l_member: (x ∈ l)
, 
list: T List
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
list-diff: as-bs
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
not: ¬A
, 
false: False
, 
true: True
, 
guard: {T}
Lemmas referenced : 
list-subtype, 
l_member_wf, 
filter_wf5, 
squash_wf, 
true_wf, 
bool_wf, 
list_wf, 
istype-universe, 
subtype_rel_list, 
iff_imp_equal_bool, 
bnot_wf, 
deq-member_wf, 
istype-void, 
iff_transitivity, 
assert_wf, 
not_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
assert-deq-member, 
istype-assert
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
sqequalRule, 
functionIsType, 
universeIsType, 
productIsType, 
because_Cache, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
setIsType, 
instantiate, 
universeEquality, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
independent_pairFormation, 
voidElimination, 
productElimination, 
promote_hyp, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
dependent_set_memberEquality_alt, 
applyLambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs,cs:T  List].
    as-bs  =  as-cs  supposing  \mforall{}x:T.  ((x  \mmember{}  as)  {}\mRightarrow{}  ((x  \mmember{}  bs)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  cs)))
Date html generated:
2020_05_19-PM-09_52_33
Last ObjectModification:
2020_01_04-PM-08_00_00
Theory : decidable!equality
Home
Index