Nuprl Lemma : assert-deq-member
∀[A:Type]. ∀eq:EqDecider(A). ∀L:A List. ∀x:A.  (↑x ∈b L ⇐⇒ (x ∈ L))
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l), 
deq-member: x ∈b L, 
list: T List, 
deq: EqDecider(T), 
assert: ↑b, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
top: Top, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
false: False, 
rev_implies: P ⇐ Q, 
uimplies: b supposing a, 
not: ¬A, 
deq-member: x ∈b L, 
or: P ∨ Q, 
guard: {T}, 
uiff: uiff(P;Q), 
eqof: eqof(d)
Lemmas referenced : 
list_induction, 
all_wf, 
iff_wf, 
assert_wf, 
deq-member_wf, 
l_member_wf, 
list_wf, 
deq_member_nil_lemma, 
deq_member_cons_lemma, 
deq_wf, 
false_wf, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
btrue_neq_bfalse, 
equal_wf, 
or_wf, 
cons_member, 
cons_wf, 
bor_wf, 
eqof_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bor, 
safe-assert-deq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
rename, 
because_Cache, 
universeEquality, 
independent_pairFormation, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
inlFormation, 
inrFormation, 
addLevel, 
productElimination, 
impliesFunctionality, 
applyEquality, 
orFunctionality, 
levelHypothesis, 
andLevelFunctionality, 
impliesLevelFunctionality
Latex:
\mforall{}[A:Type].  \mforall{}eq:EqDecider(A).  \mforall{}L:A  List.  \mforall{}x:A.    (\muparrow{}x  \mmember{}\msubb{}  L  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L))
Date html generated:
2017_04_14-AM-08_53_31
Last ObjectModification:
2017_02_27-PM-03_38_03
Theory : list_0
Home
Index