Nuprl Lemma : assert-deq-member

[A:Type]. ∀eq:EqDecider(A). ∀L:A List. ∀x:A.  (↑x ∈b ⇐⇒ (x ∈ L))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) deq-member: x ∈b L list: List deq: EqDecider(T) assert: b uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q top: Top assert: b ifthenelse: if then else fi  bfalse: ff prop: iff: ⇐⇒ Q and: P ∧ Q false: False rev_implies:  Q uimplies: supposing a not: ¬A deq-member: x ∈b L or: P ∨ Q guard: {T} uiff: uiff(P;Q) eqof: eqof(d)
Lemmas referenced :  list_induction all_wf iff_wf assert_wf deq-member_wf l_member_wf list_wf deq_member_nil_lemma deq_member_cons_lemma deq_wf false_wf null_nil_lemma btrue_wf member-implies-null-eq-bfalse nil_wf btrue_neq_bfalse equal_wf or_wf cons_member cons_wf bor_wf eqof_wf iff_transitivity iff_weakening_uiff assert_of_bor safe-assert-deq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality rename because_Cache universeEquality independent_pairFormation independent_isectElimination equalityTransitivity equalitySymmetry unionElimination inlFormation inrFormation addLevel productElimination impliesFunctionality applyEquality orFunctionality levelHypothesis andLevelFunctionality impliesLevelFunctionality

Latex:
\mforall{}[A:Type].  \mforall{}eq:EqDecider(A).  \mforall{}L:A  List.  \mforall{}x:A.    (\muparrow{}x  \mmember{}\msubb{}  L  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L))



Date html generated: 2017_04_14-AM-08_53_31
Last ObjectModification: 2017_02_27-PM-03_38_03

Theory : list_0


Home Index