Nuprl Lemma : deq_member_cons_lemma
∀v,u,x,eq:Top.  (x ∈b [u / v] ~ (eq u x) ∨bx ∈b v)
Proof
Definitions occuring in Statement : 
deq-member: x ∈b L
, 
cons: [a / b]
, 
bor: p ∨bq
, 
top: Top
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
deq-member: x ∈b L
, 
top: Top
Lemmas referenced : 
top_wf, 
reduce_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}v,u,x,eq:Top.    (x  \mmember{}\msubb{}  [u  /  v]  \msim{}  (eq  u  x)  \mvee{}\msubb{}x  \mmember{}\msubb{}  v)
Date html generated:
2016_05_14-AM-06_53_08
Last ObjectModification:
2015_12_26-PM-00_20_36
Theory : list_0
Home
Index