Nuprl Lemma : deq_member_cons_lemma

v,u,x,eq:Top.  (x ∈b [u v] (eq x) ∨bx ∈b v)


Proof




Definitions occuring in Statement :  deq-member: x ∈b L cons: [a b] bor: p ∨bq top: Top all: x:A. B[x] apply: a sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T deq-member: x ∈b L top: Top
Lemmas referenced :  top_wf reduce_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}v,u,x,eq:Top.    (x  \mmember{}\msubb{}  [u  /  v]  \msim{}  (eq  u  x)  \mvee{}\msubb{}x  \mmember{}\msubb{}  v)



Date html generated: 2016_05_14-AM-06_53_08
Last ObjectModification: 2015_12_26-PM-00_20_36

Theory : list_0


Home Index