Nuprl Lemma : deq-member_wf

[A:Type]. ∀[eq:EqDecider(A)]. ∀[L:A List]. ∀[x:A].  (x ∈b L ∈ 𝔹)


Proof




Definitions occuring in Statement :  deq-member: x ∈b L list: List deq: EqDecider(T) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  deq-member: x ∈b L uall: [x:A]. B[x] member: t ∈ T deq: EqDecider(T)
Lemmas referenced :  reduce_wf bool_wf bor_wf bfalse_wf list_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality applyEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[L:A  List].  \mforall{}[x:A].    (x  \mmember{}\msubb{}  L  \mmember{}  \mBbbB{})



Date html generated: 2016_05_14-AM-06_30_19
Last ObjectModification: 2015_12_26-PM-00_39_30

Theory : list_0


Home Index