Nuprl Lemma : deq-member_wf
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[L:A List]. ∀[x:A].  (x ∈b L ∈ 𝔹)
Proof
Definitions occuring in Statement : 
deq-member: x ∈b L
, 
list: T List
, 
deq: EqDecider(T)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
deq-member: x ∈b L
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
deq: EqDecider(T)
Lemmas referenced : 
reduce_wf, 
bool_wf, 
bor_wf, 
bfalse_wf, 
list_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[L:A  List].  \mforall{}[x:A].    (x  \mmember{}\msubb{}  L  \mmember{}  \mBbbB{})
Date html generated:
2016_05_14-AM-06_30_19
Last ObjectModification:
2015_12_26-PM-00_39_30
Theory : list_0
Home
Index