Nuprl Lemma : name-morph_subtype_remove1
∀[I,J:Cname List]. ∀[x:Cname]. ∀[f:name-morph(I;J)].
  (f ∈ name-morph(I-[x];J-[f x])) supposing ((↑isname(f x)) and (x ∈ I))
Proof
Definitions occuring in Statement : 
name-morph: name-morph(I;J)
, 
isname: isname(z)
, 
cname_deq: CnameDeq
, 
coordinate_name: Cname
, 
list-diff: as-bs
, 
l_member: (x ∈ l)
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
name-morph: name-morph(I;J)
, 
nameset: nameset(L)
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
squash: ↓T
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
assert-isname, 
nameset_wf, 
l_member_wf, 
coordinate_name_wf, 
assert_wf, 
isname_wf, 
name-morph_wf, 
list_wf, 
nameset_subtype, 
list-diff_wf, 
cname_deq_wf, 
cons_wf, 
nil_wf, 
list-diff-subset, 
member-list-diff, 
member_singleton, 
equal_wf, 
subtype_base_sq, 
nameset_subtype_base, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
decidable__equal_int, 
int_formula_prop_wf, 
le_wf, 
extd-nameset_wf, 
nameset_subtype_extd-nameset, 
decidable__assert, 
set_subtype_base, 
int_subtype_base, 
not-assert-isname, 
nsub2_subtype_extd-nameset, 
all_wf, 
extd-nameset_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
hypothesis, 
dependent_set_memberEquality, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
isect_memberEquality, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
computeAll, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
functionEquality, 
universeEquality
Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[x:Cname].  \mforall{}[f:name-morph(I;J)].
    (f  \mmember{}  name-morph(I-[x];J-[f  x]))  supposing  ((\muparrow{}isname(f  x))  and  (x  \mmember{}  I))
Date html generated:
2017_10_05-AM-10_05_39
Last ObjectModification:
2017_07_28-AM-11_16_07
Theory : cubical!sets
Home
Index