Nuprl Lemma : list-diff-subset
∀[T:Type]. ∀eq:EqDecider(T). ∀as,bs:T List.  l_subset(T;as-bs;as)
Proof
Definitions occuring in Statement : 
list-diff: as-bs, 
l_subset: l_subset(T;as;bs), 
list: T List, 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
l_subset: l_subset(T;as;bs), 
implies: P ⇒ Q, 
list-diff: as-bs, 
member: t ∈ T, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
and: P ∧ Q
Lemmas referenced : 
member_filter_2, 
l_member_wf, 
bnot_wf, 
deq-member_wf, 
list-diff_wf, 
list_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
lambdaEquality, 
hypothesis, 
setElimination, 
rename, 
cumulativity, 
setEquality, 
because_Cache, 
productElimination, 
independent_functionElimination, 
sqequalRule, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}as,bs:T  List.    l\_subset(T;as-bs;as)
Date html generated:
2016_05_14-PM-03_29_50
Last ObjectModification:
2015_12_26-PM-06_02_59
Theory : decidable!equality
Home
Index