Nuprl Lemma : face-map-comp2
∀A,B:Cname List. ∀g:name-morph(A;B). ∀x,y:nameset(A). ∀i,j:ℕ2.
  (g o ((g x:=i) o (g y:=j))) = (((x:=i) o (y:=j)) o g) ∈ name-morph(A;B-[g x; g y]) 
  supposing ((↑isname(g x)) ∧ (↑isname(g y))) ∧ (¬(x = y ∈ Cname))
Proof
Definitions occuring in Statement : 
name-comp: (f o g), 
face-map: (x:=i), 
name-morph: name-morph(I;J), 
isname: isname(z), 
nameset: nameset(L), 
cname_deq: CnameDeq, 
coordinate_name: Cname, 
list-diff: as-bs, 
cons: [a / b], 
nil: [], 
list: T List, 
int_seg: {i..j-}, 
assert: ↑b, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
not: ¬A, 
and: P ∧ Q, 
apply: f a, 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
name-morph: name-morph(I;J), 
uiff: uiff(P;Q), 
not: ¬A, 
implies: P ⇒ Q, 
nameset: nameset(L), 
false: False, 
subtype_rel: A ⊆r B, 
true: True, 
squash: ↓T, 
prop: ℙ, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
coordinate_name: Cname, 
int_upper: {i...}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than: a < b, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
decidable: Dec(P), 
or: P ∨ Q, 
face-map: (x:=i), 
name-comp: (f o g), 
compose: f o g, 
uext: uext(g), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
top: Top, 
bfalse: ff, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
isname: isname(z), 
nequal: a ≠ b ∈ T , 
sq_stable: SqStable(P), 
l_member: (x ∈ l), 
respects-equality: respects-equality(S;T), 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
assert-isname, 
istype-assert, 
isname_wf, 
coordinate_name_wf, 
istype-void, 
int_seg_wf, 
nameset_wf, 
name-morph_wf, 
name-morph-ext, 
list-diff_wf, 
cname_deq_wf, 
cons_wf, 
nil_wf, 
name-comp_wf, 
face-map_wf2, 
subtype_rel_wf, 
squash_wf, 
true_wf, 
istype-universe, 
list_wf, 
list-diff2, 
iff_weakening_equal, 
subtype_rel_self, 
name-morph_subtype_remove1, 
member-list-diff, 
int_seg_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
intformnot_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
subtype_base_sq, 
int_subtype_base, 
decidable__equal_int, 
int_formula_prop_wf, 
istype-le, 
member_singleton, 
l_member_wf, 
eq_int_wf, 
intformless_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
iff_imp_equal_bool, 
le_int_wf, 
bfalse_wf, 
iff_functionality_wrt_iff, 
assert_wf, 
le_wf, 
false_wf, 
iff_weakening_uiff, 
assert_of_le_int, 
extd-nameset_subtype_int, 
isname-nameset, 
nsub2_subtype_extd-nameset, 
nameset_subtype_base, 
extd-nameset-respects-equality, 
respects-equality-set-trivial2, 
cons_member, 
nameset_subtype_extd-nameset, 
not-assert-isname
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
productIsType, 
functionIsType, 
equalityIstype, 
universeIsType, 
inhabitedIsType, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
imageElimination, 
instantiate, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
dependent_functionElimination, 
independent_pairFormation, 
applyLambdaEquality, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
cumulativity, 
intEquality, 
unionElimination, 
voidElimination, 
dependent_set_memberEquality_alt, 
promote_hyp, 
equalityElimination, 
isect_memberEquality_alt, 
inlFormation_alt, 
inrFormation_alt, 
unionIsType
Latex:
\mforall{}A,B:Cname  List.  \mforall{}g:name-morph(A;B).  \mforall{}x,y:nameset(A).  \mforall{}i,j:\mBbbN{}2.
    (g  o  ((g  x:=i)  o  (g  y:=j)))  =  (((x:=i)  o  (y:=j))  o  g) 
    supposing  ((\muparrow{}isname(g  x))  \mwedge{}  (\muparrow{}isname(g  y)))  \mwedge{}  (\mneg{}(x  =  y))
Date html generated:
2020_05_21-AM-10_48_43
Last ObjectModification:
2019_12_10-PM-00_28_30
Theory : cubical!sets
Home
Index