Nuprl Lemma : face-map-comp2

A,B:Cname List. ∀g:name-morph(A;B). ∀x,y:nameset(A). ∀i,j:ℕ2.
  (g ((g x:=i) (g y:=j))) (((x:=i) (y:=j)) g) ∈ name-morph(A;B-[g x; y]) 
  supposing ((↑isname(g x)) ∧ (↑isname(g y))) ∧ (x y ∈ Cname))


Proof




Definitions occuring in Statement :  name-comp: (f g) face-map: (x:=i) name-morph: name-morph(I;J) isname: isname(z) nameset: nameset(L) cname_deq: CnameDeq coordinate_name: Cname list-diff: as-bs cons: [a b] nil: [] list: List int_seg: {i..j-} assert: b uimplies: supposing a all: x:A. B[x] not: ¬A and: P ∧ Q apply: a natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T name-morph: name-morph(I;J) uiff: uiff(P;Q) not: ¬A implies:  Q nameset: nameset(L) false: False subtype_rel: A ⊆B true: True squash: T prop: guard: {T} iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B coordinate_name: Cname int_upper: {i...} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] sq_type: SQType(T) decidable: Dec(P) or: P ∨ Q face-map: (x:=i) name-comp: (f g) compose: g uext: uext(g) bool: 𝔹 unit: Unit it: btrue: tt top: Top bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b isname: isname(z) nequal: a ≠ b ∈  sq_stable: SqStable(P) l_member: (x ∈ l) respects-equality: respects-equality(S;T) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  assert-isname istype-assert isname_wf coordinate_name_wf istype-void int_seg_wf nameset_wf name-morph_wf name-morph-ext list-diff_wf cname_deq_wf cons_wf nil_wf name-comp_wf face-map_wf2 subtype_rel_wf squash_wf true_wf istype-universe list_wf list-diff2 iff_weakening_equal subtype_rel_self name-morph_subtype_remove1 member-list-diff int_seg_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf intformnot_wf istype-int int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_not_lemma subtype_base_sq int_subtype_base decidable__equal_int int_formula_prop_wf istype-le member_singleton l_member_wf eq_int_wf intformless_wf itermConstant_wf intformle_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_le_lemma eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int iff_imp_equal_bool le_int_wf bfalse_wf iff_functionality_wrt_iff assert_wf le_wf false_wf iff_weakening_uiff assert_of_le_int extd-nameset_subtype_int isname-nameset nsub2_subtype_extd-nameset nameset_subtype_base extd-nameset-respects-equality respects-equality-set-trivial2 cons_member nameset_subtype_extd-nameset not-assert-isname
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut sqequalHypSubstitution productElimination thin introduction extract_by_obid isectElimination hypothesisEquality applyEquality setElimination rename because_Cache hypothesis independent_isectElimination sqequalRule productIsType functionIsType equalityIstype universeIsType inhabitedIsType natural_numberEquality equalityTransitivity equalitySymmetry lambdaEquality_alt imageElimination instantiate universeEquality imageMemberEquality baseClosed independent_functionElimination dependent_functionElimination independent_pairFormation applyLambdaEquality approximateComputation dependent_pairFormation_alt int_eqEquality Error :memTop,  cumulativity intEquality unionElimination voidElimination dependent_set_memberEquality_alt promote_hyp equalityElimination isect_memberEquality_alt inlFormation_alt inrFormation_alt unionIsType

Latex:
\mforall{}A,B:Cname  List.  \mforall{}g:name-morph(A;B).  \mforall{}x,y:nameset(A).  \mforall{}i,j:\mBbbN{}2.
    (g  o  ((g  x:=i)  o  (g  y:=j)))  =  (((x:=i)  o  (y:=j))  o  g) 
    supposing  ((\muparrow{}isname(g  x))  \mwedge{}  (\muparrow{}isname(g  y)))  \mwedge{}  (\mneg{}(x  =  y))



Date html generated: 2020_05_21-AM-10_48_43
Last ObjectModification: 2019_12_10-PM-00_28_30

Theory : cubical!sets


Home Index