Nuprl Lemma : name-morph-ext

[I,J:Cname List]. ∀[f,g:name-morph(I;J)].
  g ∈ name-morph(I;J) supposing ∀x:nameset(I). ((f x) (g x) ∈ extd-nameset(J))


Proof




Definitions occuring in Statement :  name-morph: name-morph(I;J) extd-nameset: extd-nameset(L) nameset: nameset(L) coordinate_name: Cname list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a name-morph: name-morph(I;J) squash: T prop: all: x:A. B[x] true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  name-morphs-equal equal_wf squash_wf true_wf extd-nameset_wf iff_weakening_equal nameset_wf all_wf name-morph_wf list_wf coordinate_name_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename hypothesis independent_isectElimination functionExtensionality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality dependent_functionElimination because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed productElimination independent_functionElimination isect_memberEquality axiomEquality

Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[f,g:name-morph(I;J)].    f  =  g  supposing  \mforall{}x:nameset(I).  ((f  x)  =  (g  x))



Date html generated: 2017_10_05-AM-10_05_32
Last ObjectModification: 2017_07_28-AM-11_16_05

Theory : cubical!sets


Home Index