Nuprl Lemma : name-morph-ext
∀[I,J:Cname List]. ∀[f,g:name-morph(I;J)].
  f = g ∈ name-morph(I;J) supposing ∀x:nameset(I). ((f x) = (g x) ∈ extd-nameset(J))
Proof
Definitions occuring in Statement : 
name-morph: name-morph(I;J)
, 
extd-nameset: extd-nameset(L)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
name-morph: name-morph(I;J)
, 
squash: ↓T
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
name-morphs-equal, 
equal_wf, 
squash_wf, 
true_wf, 
extd-nameset_wf, 
iff_weakening_equal, 
nameset_wf, 
all_wf, 
name-morph_wf, 
list_wf, 
coordinate_name_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
independent_isectElimination, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_functionElimination, 
because_Cache, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[f,g:name-morph(I;J)].    f  =  g  supposing  \mforall{}x:nameset(I).  ((f  x)  =  (g  x))
Date html generated:
2017_10_05-AM-10_05_32
Last ObjectModification:
2017_07_28-AM-11_16_05
Theory : cubical!sets
Home
Index