Nuprl Lemma : discrete-cubical-type_wf

[T:Type]. ∀[X:CubicalSet].  X ⊢ discr(T)


Proof




Definitions occuring in Statement :  discrete-cubical-type: discr(T) cubical-type: {X ⊢ _} cubical-set: CubicalSet uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-type: {X ⊢ _} discrete-cubical-type: discr(T) and: P ∧ Q cand: c∧ B all: x:A. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q so_apply: x[s]
Lemmas referenced :  I-cube_wf list_wf coordinate_name_wf name-morph_wf cube-set-restriction_wf all_wf equal_wf id-morph_wf subtype_rel-equal squash_wf true_wf cube-set-restriction-id iff_weakening_equal name-comp_wf cube-set-restriction-comp cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality dependent_pairEquality lambdaEquality cumulativity hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule because_Cache functionEquality applyEquality functionExtensionality lambdaFormation independent_pairFormation productElimination productEquality independent_isectElimination instantiate imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination dependent_functionElimination axiomEquality isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[X:CubicalSet].    X  \mvdash{}  discr(T)



Date html generated: 2017_10_05-AM-10_17_14
Last ObjectModification: 2017_07_28-AM-11_20_12

Theory : cubical!sets


Home Index