Step
*
1
1
1
of Lemma
Kan_id_filler_uniform
1. X : CubicalSet
2. A : {X ⊢ _(Kan)}
3. a : {X ⊢ _:Kan-type(A)}
4. b : {X ⊢ _:Kan-type(A)}
5. I : Cname List
6. alpha : X(I)
7. J : nameset(I) List
8. x : nameset(I)
9. i : ℕ2
10. bx : A-open-box(X;(Id_Kan-type(A) a b);I;alpha;J;x;i)
11. K : Cname List
12. f : name-morph(I;K)
13. ∀i:nameset(I). ((i ∈ J)
⇒ (↑isname(f i)))
14. ↑isname(f x)
⊢ map(f;J) ∈ nameset(K) List
BY
{ TACTIC:((GenConcl ⌜J = L ∈ ({i:Cname| (i ∈ J)} List)⌝⋅ THENA Auto) THEN MemCD THEN Try (QuickAuto)) }
1
.....subterm..... T:t
1:n
1. X : CubicalSet
2. A : {X ⊢ _(Kan)}
3. a : {X ⊢ _:Kan-type(A)}
4. b : {X ⊢ _:Kan-type(A)}
5. I : Cname List
6. alpha : X(I)
7. J : nameset(I) List
8. x : nameset(I)
9. i : ℕ2
10. bx : A-open-box(X;(Id_Kan-type(A) a b);I;alpha;J;x;i)
11. K : Cname List
12. f : name-morph(I;K)
13. ∀i:nameset(I). ((i ∈ J)
⇒ (↑isname(f i)))
14. ↑isname(f x)
15. L : {i:Cname| (i ∈ J)} List
16. J = L ∈ ({i:Cname| (i ∈ J)} List)
⊢ f ∈ {i:Cname| (i ∈ J)} ⟶ nameset(K)
Latex:
Latex:
1. X : CubicalSet
2. A : \{X \mvdash{} \_(Kan)\}
3. a : \{X \mvdash{} \_:Kan-type(A)\}
4. b : \{X \mvdash{} \_:Kan-type(A)\}
5. I : Cname List
6. alpha : X(I)
7. J : nameset(I) List
8. x : nameset(I)
9. i : \mBbbN{}2
10. bx : A-open-box(X;(Id\_Kan-type(A) a b);I;alpha;J;x;i)
11. K : Cname List
12. f : name-morph(I;K)
13. \mforall{}i:nameset(I). ((i \mmember{} J) {}\mRightarrow{} (\muparrow{}isname(f i)))
14. \muparrow{}isname(f x)
\mvdash{} map(f;J) \mmember{} nameset(K) List
By
Latex:
TACTIC:((GenConcl \mkleeneopen{}J = L\mkleeneclose{}\mcdot{} THENA Auto) THEN MemCD THEN Try (QuickAuto))
Home
Index