Nuprl Lemma : Kan_id_filler_uniform

X:CubicalSet. ∀A:{X ⊢ _(Kan)}. ∀a,b:{X ⊢ _:Kan-type(A)}.
  uniform-Kan-A-filler(X;(Id_Kan-type(A) b);Kan_id_filler(X;A;a;b))


Proof




Definitions occuring in Statement :  Kan_id_filler: Kan_id_filler(X;A;a;b) cubical-identity: (Id_A b) Kan-type: Kan-type(Ak) Kan-cubical-type: {X ⊢ _(Kan)} uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler) cubical-term: {X ⊢ _:AF} cubical-set: CubicalSet all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler) implies:  Q uall: [x:A]. B[x] member: t ∈ T name-morph: name-morph(I;J) nameset: nameset(L) subtype_rel: A ⊆B uimplies: supposing a prop: cand: c∧ B and: P ∧ Q top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) ge: i ≥  lelt: i ≤ j < k int_seg: {i..j-} sq_stable: SqStable(P) squash: T nat: guard: {T} sq_type: SQType(T) so_apply: x[s] so_lambda: λ2x.t[x] int_upper: {i...} coordinate_name: Cname exists: x:A. B[x] l_member: (x ∈ l) uiff: uiff(P;Q) iff: ⇐⇒ Q name-morph-domain: name-morph-domain(f;I) rev_implies:  Q true: True btrue: tt ifthenelse: if then else fi  assert: b l_subset: l_subset(T;as;bs) bnot: ¬bb bfalse: ff it: unit: Unit bool: 𝔹 extend-name-morph: f[z1:=z2] rev_uimplies: rev_uimplies(P;Q) isname: isname(z) less_than': less_than'(a;b) less_than: a < b nil: [] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] colength: colength(L) cons: [a b] pi2: snd(t) cubical-type-ap-morph: (u f) cubical-identity: (Id_A b) Kan_id_filler: Kan_id_filler(X;A;a;b) path-eq: path-eq(X;A;I;alpha;p;q) I-path-morph: I-path-morph(X;A;I;K;f;alpha;p) named-path-morph: named-path-morph(X;A;I;K;z;x;f;alpha;w) A-open-box: A-open-box(X;A;I;alpha;J;x;i) cubical-id-box: cubical-id-box(X;A;a;b;I;alpha;box) A-open-box-image: A-open-box-image(X;A;I;K;f;alpha;bx) extend-A-open-box: extend-A-open-box(bx;f1;f2) term-A-face: term-A-face(a;I;alpha;i) A-face-image: A-face-image(X;A;I;K;f;alpha;face) A-face: A-face(X;A;I;alpha) spreadn: spread3 le: A ≤ B lift-id-faces: lift-id-faces(X;A;I;alpha;box) compose: g cubical-type-at: A(a) pi1: fst(t) l_all: (∀x∈L.P[x]) A-face-name: A-face-name(f) cubical-path: cubical-path(X;A;a;b;I;alpha) quotient: x,y:A//B[x; y] I-path: I-path(X;A;a;b;I;alpha) lift-id-face: lift-id-face(X;A;I;alpha;face) set-path-name: set-path-name(X;A;I;alpha;x;p) named-path: named-path(X;A;a;b;I;alpha;z) respects-equality: respects-equality(S;T)
Lemmas referenced :  istype-assert isname_wf l_member_wf coordinate_name_wf subtype_rel_list nameset_wf name-morph_wf A-open-box_wf cubical-identity_wf Kan-type_wf int_seg_wf list_wf I-cube_wf cubical-term_wf Kan-cubical-type_wf cubical-set_wf equal_wf map_wf list-subtype int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le decidable__equal-coordinate_name sq_stable__l_member int_seg_properties nat_properties sq_stable__le select_wf int_subtype_base le_wf set_subtype_base subtype_base_sq assert-isname cons_wf cons_member filter_wf5 member_filter_2 bool_subtype_base bool_wf assert_elim extd-nameset_wf and_wf not_wf fresh-cname_wf l_subset_cons_same l_subset_right_cons_trivial nameset_subtype assert_wf not_functionality_wrt_uiff assert-bnot bool_cases_sqequal eqff_to_assert assert-eq-cname eqtt_to_assert eq-cname_wf set_wf assert_of_le_int map_cons_lemma istype-void iff_weakening_uiff member_wf decidable__equal_int int_term_value_subtract_lemma itermSubtract_wf subtract_wf int_term_value_add_lemma int_formula_prop_eq_lemma itermAdd_wf intformeq_wf spread_cons_lemma product_subtype_list map_nil_lemma list-cases colength_wf_list nat_wf equal-wf-T-base less_than_wf ge_wf int_formula_prop_less_lemma intformless_wf fresh-cname-not-equal2 equal-cubical-identity-at Kan_id_filler_wf1 cube-set-restriction_wf A-open-box-image_wf I-path-morph_wf I-path_wf Kanfiller-uniform iota_wf cubical-id-box_wf extend-name-morph_wf fresh-cname-not-member2 isname-name ifthenelse_wf isname-nameset squash_wf true_wf istype-universe extend-name-morph-iota name-comp_wf iff_weakening_equal subtype_rel_self cube-set-restriction-comp cubical-type_wf cubical-type-at_wf Kanfiller_wf cubical-type-ap-morph_wf subtype_rel-equal rename-one-name_wf cubical-type-ap-morph-id rename-one-same istype-int A-open-box-equal filter_cons_lemma length_wf lelt_wf select_member A-face_wf equal-wf-base false_wf cubical-term-at-morph face-map_wf2 nil_wf cname_deq_wf list-diff_wf add-remove-fresh-sq name-comp-id-right l_subset_refl name-morph_subtype id-morph_wf iota-identity cubical-term-at_wf face-map_wf extend-name-morph-irrelevant cube-set-restriction-id map-map istype-le istype-less_than A-face-name_wf decidable__lt path-eq_wf equal-wf-base-T ite_rw_false bfalse_wf assert_of_ff extd-nameset_subtype_base name-morph_subtype_remove1 member-list-diff extd-nameset-respects-equality nameset_subtype_extd-nameset rename-one-iota subtype_rel_weakening ext-eq_weakening list-diff-cons-single rename-one-extend-id iota-face-map list_subtype_base face-map-comp name-comp-assoc extend-name-morph-rename-one cubical-type-ap-morph-comp rename-one-extend-name-morph l_subset_wf fills-A-open-box_wf subtype_rel_set
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality setElimination rename sqequalRule functionIsType inhabitedIsType universeIsType independent_isectElimination lambdaEquality_alt because_Cache dependent_functionElimination natural_numberEquality independent_pairFormation independent_functionElimination lambdaFormation setEquality equalitySymmetry equalityTransitivity lambdaEquality voidEquality voidElimination functionExtensionality hyp_replacement equalityElimination isect_memberEquality int_eqEquality dependent_pairFormation approximateComputation unionElimination imageElimination baseClosed imageMemberEquality applyLambdaEquality intEquality cumulativity instantiate productElimination dependent_set_memberEquality inlFormation promote_hyp isect_memberEquality_alt dependent_pairFormation_alt equalityIstype addEquality hypothesis_subsumption axiomSqEquality intWeakElimination inlFormation_alt dependent_set_memberEquality_alt universeEquality equalityIsType1 setIsType sqequalBase inrFormation_alt unionIsType equalityIsType2 closedConclusion inrFormation equalityIsType3 dependent_pairEquality_alt productIsType productEquality independent_pairEquality pointwiseFunctionalityForEquality pertypeElimination baseApply

Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_(Kan)\}.  \mforall{}a,b:\{X  \mvdash{}  \_:Kan-type(A)\}.
    uniform-Kan-A-filler(X;(Id\_Kan-type(A)  a  b);Kan\_id\_filler(X;A;a;b))



Date html generated: 2019_11_06-PM-00_51_50
Last ObjectModification: 2018_12_20-PM-00_18_49

Theory : cubical!sets


Home Index