Nuprl Lemma : Kan-type_wf

[X:CubicalSet]. ∀[AK:{X ⊢ _(Kan)}].  X ⊢ Kan-type(AK)


Proof




Definitions occuring in Statement :  Kan-type: Kan-type(Ak) Kan-cubical-type: {X ⊢ _(Kan)} cubical-type: {X ⊢ _} cubical-set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Kan-type: Kan-type(Ak) Kan-cubical-type: {X ⊢ _(Kan)} pi1: fst(t)
Lemmas referenced :  Kan-cubical-type_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution setElimination thin rename productElimination hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination isect_memberEquality because_Cache

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[AK:\{X  \mvdash{}  \_(Kan)\}].    X  \mvdash{}  Kan-type(AK)



Date html generated: 2016_06_16-PM-06_44_12
Last ObjectModification: 2015_12_28-PM-04_25_36

Theory : cubical!sets


Home Index