Nuprl Lemma : Kan-cubical-type_wf
∀[X:CubicalSet]. ({X ⊢ _(Kan)} ∈ 𝕌')
Proof
Definitions occuring in Statement : 
Kan-cubical-type: {X ⊢ _(Kan)}
, 
cubical-set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
Kan-cubical-type: {X ⊢ _(Kan)}
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
nameset: nameset(L)
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
cubical-type_wf, 
list_wf, 
coordinate_name_wf, 
I-cube_wf, 
nameset_wf, 
int_seg_wf, 
A-open-box_wf, 
subtype_rel_list, 
cubical-type-at_wf, 
Kan-A-filler_wf, 
uniform-Kan-A-filler_wf, 
cubical-set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
productEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
applyEquality, 
lambdaEquality, 
cumulativity, 
universeEquality, 
because_Cache, 
natural_numberEquality, 
dependent_functionElimination, 
independent_isectElimination, 
setElimination, 
rename, 
productElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[X:CubicalSet].  (\{X  \mvdash{}  \_(Kan)\}  \mmember{}  \mBbbU{}')
Date html generated:
2016_06_16-PM-06_44_01
Last ObjectModification:
2015_12_28-PM-04_25_46
Theory : cubical!sets
Home
Index