Nuprl Lemma : Kan-cubical-type_wf

[X:CubicalSet]. ({X ⊢ _(Kan)} ∈ 𝕌')


Proof




Definitions occuring in Statement :  Kan-cubical-type: {X ⊢ _(Kan)} cubical-set: CubicalSet uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Kan-cubical-type: {X ⊢ _(Kan)} subtype_rel: A ⊆B all: x:A. B[x] uimplies: supposing a nameset: nameset(L) and: P ∧ Q prop:
Lemmas referenced :  cubical-type_wf list_wf coordinate_name_wf I-cube_wf nameset_wf int_seg_wf A-open-box_wf subtype_rel_list cubical-type-at_wf Kan-A-filler_wf uniform-Kan-A-filler_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality productEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis functionEquality applyEquality lambdaEquality cumulativity universeEquality because_Cache natural_numberEquality dependent_functionElimination independent_isectElimination setElimination rename productElimination axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[X:CubicalSet].  (\{X  \mvdash{}  \_(Kan)\}  \mmember{}  \mBbbU{}')



Date html generated: 2016_06_16-PM-06_44_01
Last ObjectModification: 2015_12_28-PM-04_25_46

Theory : cubical!sets


Home Index