Nuprl Lemma : equal-cubical-identity-at

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[I:Cname List]. ∀[alpha:X(I)]. ∀[p,q:I-path(X;A;a;b;I;alpha)].
  q ∈ (Id_A b)(alpha) supposing path-eq(X;A;I;alpha;p;q)


Proof




Definitions occuring in Statement :  cubical-identity: (Id_A b) path-eq: path-eq(X;A;I;alpha;p;q) I-path: I-path(X;A;a;b;I;alpha) cubical-term: {X ⊢ _:AF} cubical-type-at: A(a) cubical-type: {X ⊢ _} I-cube: X(I) cubical-set: CubicalSet coordinate_name: Cname list: List uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a cubical-type-at: A(a) pi1: fst(t) cubical-identity: (Id_A b) cubical-path: cubical-path(X;A;a;b;I;alpha) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] all: x:A. B[x] implies:  Q prop:
Lemmas referenced :  quotient-member-eq I-path_wf path-eq_wf path-eq-equiv I-cube_wf list_wf coordinate_name_wf cubical-term_wf cubical-type_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality independent_isectElimination dependent_functionElimination independent_functionElimination isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[I:Cname  List].  \mforall{}[alpha:X(I)].
\mforall{}[p,q:I-path(X;A;a;b;I;alpha)].
    p  =  q  supposing  path-eq(X;A;I;alpha;p;q)



Date html generated: 2016_06_16-PM-07_31_47
Last ObjectModification: 2015_12_28-PM-04_12_31

Theory : cubical!sets


Home Index