Nuprl Lemma : equal-cubical-identity-at
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[I:Cname List]. ∀[alpha:X(I)]. ∀[p,q:I-path(X;A;a;b;I;alpha)].
  p = q ∈ (Id_A a b)(alpha) supposing path-eq(X;A;I;alpha;p;q)
Proof
Definitions occuring in Statement : 
cubical-identity: (Id_A a b)
, 
path-eq: path-eq(X;A;I;alpha;p;q)
, 
I-path: I-path(X;A;a;b;I;alpha)
, 
cubical-term: {X ⊢ _:AF}
, 
cubical-type-at: A(a)
, 
cubical-type: {X ⊢ _}
, 
I-cube: X(I)
, 
cubical-set: CubicalSet
, 
coordinate_name: Cname
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
cubical-type-at: A(a)
, 
pi1: fst(t)
, 
cubical-identity: (Id_A a b)
, 
cubical-path: cubical-path(X;A;a;b;I;alpha)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
quotient-member-eq, 
I-path_wf, 
path-eq_wf, 
path-eq-equiv, 
I-cube_wf, 
list_wf, 
coordinate_name_wf, 
cubical-term_wf, 
cubical-type_wf, 
cubical-set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[I:Cname  List].  \mforall{}[alpha:X(I)].
\mforall{}[p,q:I-path(X;A;a;b;I;alpha)].
    p  =  q  supposing  path-eq(X;A;I;alpha;p;q)
Date html generated:
2016_06_16-PM-07_31_47
Last ObjectModification:
2015_12_28-PM-04_12_31
Theory : cubical!sets
Home
Index