Nuprl Lemma : cubical-id-box_wf

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
[alpha:X(I)]. ∀[box:A-open-box(X;(Id_A b);I;alpha;J;x;i)].
  (cubical-id-box(X;A;a;b;I;alpha;box) ∈ A-open-box(X;A;[fresh-cname(I) 
                                                         I];iota(fresh-cname(I))(alpha);[fresh-cname(I) J];x;i))


Proof




Definitions occuring in Statement :  cubical-id-box: cubical-id-box(X;A;a;b;I;alpha;box) cubical-identity: (Id_A b) A-open-box: A-open-box(X;A;I;alpha;J;x;i) cubical-term: {X ⊢ _:AF} cubical-type: {X ⊢ _} cube-set-restriction: f(s) I-cube: X(I) cubical-set: CubicalSet iota: iota(x) fresh-cname: fresh-cname(I) nameset: nameset(L) coordinate_name: Cname cons: [a b] list: List int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-id-box: cubical-id-box(X;A;a;b;I;alpha;box) all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a nameset: nameset(L) int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T coordinate_name: Cname int_upper: {i...} decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: false: False l_member: (x ∈ l) nat: less_than': less_than'(a;b) top: Top select: L[n] cons: [a b] cand: c∧ B nat_plus: + guard: {T} uiff: uiff(P;Q) sq_stable: SqStable(P) ge: i ≥  so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) A-face-name: A-face-name(f) term-A-face: term-A-face(a;I;alpha;i) pi1: fst(t) pi2: snd(t) l_all: (∀x∈L.P[x]) lift-id-faces: lift-id-faces(X;A;I;alpha;box) A-open-box: A-open-box(X;A;I;alpha;J;x;i) A-face: A-face(X;A;I;alpha) lift-id-face: lift-id-face(X;A;I;alpha;face) A-face-compatible: A-face-compatible(X;A;I;alpha;f1;f2) spreadn: spread3 iff: ⇐⇒ Q I-path: I-path(X;A;a;b;I;alpha) named-path: named-path(X;A;a;b;I;alpha;z) name-path-endpoints: name-path-endpoints(X;A;a;b;I;alpha;z;omega) true: True rev_implies:  Q deq: EqDecider(T) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b iota': iota'(I) cubical-term-at: u(a)
Lemmas referenced :  extend-A-open-box_wf cons_wf coordinate_name_wf fresh-cname_wf cube-set-restriction_wf iota_wf subtype_rel_list nameset_wf nameset_subtype l_subset_right_cons_trivial lift-id-faces_wf term-A-face_wf int_seg_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than istype-void length_of_cons_lemma add_nat_plus length_wf_nat nat_plus_properties add-is-int-iff intformand_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma false_wf length_wf select_wf nat_properties sq_stable__l_member decidable__equal-coordinate_name sq_stable__le l_member_wf subtype_base_sq set_subtype_base int_subtype_base fresh-cname-not-equal2 A-open-box_wf cubical-identity_wf I-cube_wf int_seg_wf list_wf cubical-term_wf cubical-type_wf cubical-set_wf length-map A-face_wf top_wf sq_stable__not set-path-name_wf list-diff_wf cname_deq_wf nil_wf face-map_wf2 subtype_rel_sets_simple not_wf member-list-diff le_wf lelt_wf select-map member_singleton equal_wf squash_wf true_wf istype-universe list-diff-cons subtype_rel_self iff_weakening_equal deq_member_cons_lemma deq_member_nil_lemma bor_wf bfalse_wf eqtt_to_assert assert-deq-member eqff_to_assert deq-member_wf bool_cases_sqequal bool_wf bool_subtype_base assert-bnot list-diff2 deq_wf list-diff-disjoint l_disjoint_singleton cons_member iota'-identity cube-set-restriction-comp subtype_rel-equal add-remove-fresh-sq cube-set-restriction-id name-comp_wf list_subtype_base face-map_wf name-morph_wf face-maps-commute cubical-type-at_wf cubical-type-ap-morph_wf iota-face-map name-morph_subtype l_subset_wf l_subset_refl cubical-type-ap-morph-comp cubical-term-at-morph subtype_rel_weakening ext-eq_weakening cubical-term-at_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination hypothesis applyEquality because_Cache independent_isectElimination lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry dependent_set_memberEquality_alt productElimination imageElimination independent_pairFormation natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt Error :memTop,  universeIsType voidElimination productIsType lambdaFormation_alt isect_memberEquality_alt applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed int_eqEquality equalityIstype imageMemberEquality instantiate cumulativity independent_pairEquality axiomEquality isectIsTypeImplies functionIsType intEquality equalityIsType1 setEquality equalityIsType4 hyp_replacement equalityIsType3 universeEquality equalityElimination inlFormation_alt

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].
\mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[alpha:X(I)].  \mforall{}[box:A-open-box(X;(Id\_A  a  b);I;alpha;J;x;i)].
    (cubical-id-box(X;A;a;b;I;alpha;box)
      \mmember{}  A-open-box(X;A;[fresh-cname(I)  /  I];iota(fresh-cname(I))(alpha);[fresh-cname(I)  /  J];x;i))



Date html generated: 2020_05_21-AM-11_13_14
Last ObjectModification: 2019_12_08-PM-07_04_17

Theory : cubical!sets


Home Index