Nuprl Lemma : set-path-name_wf

X:CubicalSet. ∀A:{X ⊢ _}. ∀a,b:{X ⊢ _:A}. ∀I:Cname List. ∀alpha:X(I).
  ∀[x:{x:Cname| ¬(x ∈ I)} ]
    ∀p:(Id_A b)(alpha)
      (set-path-name(X;A;I;alpha;x;p) ∈ {q:I-path(X;A;a;b;I;alpha)| 
                                         ((fst(q)) x ∈ Cname) ∧ (q p ∈ (Id_A b)(alpha))} )


Proof




Definitions occuring in Statement :  set-path-name: set-path-name(X;A;I;alpha;x;p) cubical-identity: (Id_A b) I-path: I-path(X;A;a;b;I;alpha) cubical-term: {X ⊢ _:AF} cubical-type-at: A(a) cubical-type: {X ⊢ _} I-cube: X(I) cubical-set: CubicalSet coordinate_name: Cname l_member: (x ∈ l) list: List uall: [x:A]. B[x] pi1: fst(t) all: x:A. B[x] not: ¬A and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] false: False not: ¬A named-path: named-path(X;A;a;b;I;alpha;z) implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} subtype_rel: A ⊆B true: True prop: squash: T uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] cubical-path: cubical-path(X;A;a;b;I;alpha) member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] pi1: fst(t) cubical-type-at: A(a) cubical-identity: (Id_A b) set-path-name: set-path-name(X;A;I;alpha;x;p) path-eq: path-eq(X;A;I;alpha;p;q) I-path: I-path(X;A;a;b;I;alpha) quotient: x,y:A//B[x; y] cand: c∧ B named-path-morph: named-path-morph(X;A;I;K;z;x;f;alpha;w)
Lemmas referenced :  cubical-set_wf cubical-type_wf cubical-term_wf list_wf not_wf set_wf cubical-identity_wf iota_wf cube-set-restriction_wf cons_wf cubical-type-at_wf subtype_rel_wf coordinate_name_wf l_member_wf named-path_wf iff_weakening_equal cube-set-restriction-id I-cube_wf true_wf squash_wf equal_wf path-eq-equiv path-eq_wf I-path_wf subtype_quotient equal-wf-base name-comp-id-left extend-name-morph-iota name-morph_wf extend-name-morph_wf cube-set-restriction-comp subtype_rel-equal id-morph_wf named-path-morph_wf equal-named-paths ext-eq_weakening subtype_rel_weakening cubical-type-ap-morph_wf cubical-type-ap-morph-comp rename-one-name_wf istype-universe subtype_rel_self rename-one-extend-name-morph rename-one-iota rename-one-extend-id quotient-member-eq cubical-path_wf
Rules used in proof :  axiomEquality dependent_functionElimination applyLambdaEquality hyp_replacement voidElimination rename setElimination independent_functionElimination productElimination baseClosed imageMemberEquality natural_numberEquality because_Cache universeEquality equalitySymmetry equalityTransitivity imageElimination applyEquality promote_hyp independent_isectElimination lambdaEquality sqequalRule hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution dependent_set_memberEquality productEquality dependent_pairEquality pertypeElimination pointwiseFunctionalityForEquality independent_pairFormation instantiate lambdaFormation_alt universeIsType lambdaEquality_alt inhabitedIsType levelHypothesis equalityUniverse addLevel

Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}a,b:\{X  \mvdash{}  \_:A\}.  \mforall{}I:Cname  List.  \mforall{}alpha:X(I).
    \mforall{}[x:\{x:Cname|  \mneg{}(x  \mmember{}  I)\}  ]
        \mforall{}p:(Id\_A  a  b)(alpha)
            (set-path-name(X;A;I;alpha;x;p)  \mmember{}  \{q:I-path(X;A;a;b;I;alpha)|  ((fst(q))  =  x)  \mwedge{}  (q  =  p)\}  )



Date html generated: 2020_05_21-AM-11_06_43
Last ObjectModification: 2020_01_15-PM-01_18_51

Theory : cubical!sets


Home Index