Nuprl Lemma : set-path-name_wf
∀X:CubicalSet. ∀A:{X ⊢ _}. ∀a,b:{X ⊢ _:A}. ∀I:Cname List. ∀alpha:X(I).
  ∀[x:{x:Cname| ¬(x ∈ I)} ]
    ∀p:(Id_A a b)(alpha)
      (set-path-name(X;A;I;alpha;x;p) ∈ {q:I-path(X;A;a;b;I;alpha)| 
                                         ((fst(q)) = x ∈ Cname) ∧ (q = p ∈ (Id_A a b)(alpha))} )
Proof
Definitions occuring in Statement : 
set-path-name: set-path-name(X;A;I;alpha;x;p)
, 
cubical-identity: (Id_A a b)
, 
I-path: I-path(X;A;a;b;I;alpha)
, 
cubical-term: {X ⊢ _:AF}
, 
cubical-type-at: A(a)
, 
cubical-type: {X ⊢ _}
, 
I-cube: X(I)
, 
cubical-set: CubicalSet
, 
coordinate_name: Cname
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
false: False
, 
not: ¬A
, 
named-path: named-path(X;A;a;b;I;alpha;z)
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
true: True
, 
prop: ℙ
, 
squash: ↓T
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
cubical-path: cubical-path(X;A;a;b;I;alpha)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
pi1: fst(t)
, 
cubical-type-at: A(a)
, 
cubical-identity: (Id_A a b)
, 
set-path-name: set-path-name(X;A;I;alpha;x;p)
, 
path-eq: path-eq(X;A;I;alpha;p;q)
, 
I-path: I-path(X;A;a;b;I;alpha)
, 
quotient: x,y:A//B[x; y]
, 
cand: A c∧ B
, 
named-path-morph: named-path-morph(X;A;I;K;z;x;f;alpha;w)
Lemmas referenced : 
cubical-set_wf, 
cubical-type_wf, 
cubical-term_wf, 
list_wf, 
not_wf, 
set_wf, 
cubical-identity_wf, 
iota_wf, 
cube-set-restriction_wf, 
cons_wf, 
cubical-type-at_wf, 
subtype_rel_wf, 
coordinate_name_wf, 
l_member_wf, 
named-path_wf, 
iff_weakening_equal, 
cube-set-restriction-id, 
I-cube_wf, 
true_wf, 
squash_wf, 
equal_wf, 
path-eq-equiv, 
path-eq_wf, 
I-path_wf, 
subtype_quotient, 
equal-wf-base, 
name-comp-id-left, 
extend-name-morph-iota, 
name-morph_wf, 
extend-name-morph_wf, 
cube-set-restriction-comp, 
subtype_rel-equal, 
id-morph_wf, 
named-path-morph_wf, 
equal-named-paths, 
ext-eq_weakening, 
subtype_rel_weakening, 
cubical-type-ap-morph_wf, 
cubical-type-ap-morph-comp, 
rename-one-name_wf, 
istype-universe, 
subtype_rel_self, 
rename-one-extend-name-morph, 
rename-one-iota, 
rename-one-extend-id, 
quotient-member-eq, 
cubical-path_wf
Rules used in proof : 
axiomEquality, 
dependent_functionElimination, 
applyLambdaEquality, 
hyp_replacement, 
voidElimination, 
rename, 
setElimination, 
independent_functionElimination, 
productElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
because_Cache, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
applyEquality, 
promote_hyp, 
independent_isectElimination, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
dependent_set_memberEquality, 
productEquality, 
dependent_pairEquality, 
pertypeElimination, 
pointwiseFunctionalityForEquality, 
independent_pairFormation, 
instantiate, 
lambdaFormation_alt, 
universeIsType, 
lambdaEquality_alt, 
inhabitedIsType, 
levelHypothesis, 
equalityUniverse, 
addLevel
Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}a,b:\{X  \mvdash{}  \_:A\}.  \mforall{}I:Cname  List.  \mforall{}alpha:X(I).
    \mforall{}[x:\{x:Cname|  \mneg{}(x  \mmember{}  I)\}  ]
        \mforall{}p:(Id\_A  a  b)(alpha)
            (set-path-name(X;A;I;alpha;x;p)  \mmember{}  \{q:I-path(X;A;a;b;I;alpha)|  ((fst(q))  =  x)  \mwedge{}  (q  =  p)\}  )
Date html generated:
2020_05_21-AM-11_06_43
Last ObjectModification:
2020_01_15-PM-01_18_51
Theory : cubical!sets
Home
Index