Nuprl Lemma : equal-named-paths
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[I:Cname List]. ∀[alpha:X(I)]. ∀[z:Cname].
  ∀[p:named-path(X;A;a;b;I;alpha;z)]. ∀[q:A(iota(z)(alpha))].
    p = q ∈ named-path(X;A;a;b;I;alpha;z) supposing p = q ∈ A(iota(z)(alpha)) 
  supposing ¬(z ∈ I)
Proof
Definitions occuring in Statement : 
named-path: named-path(X;A;a;b;I;alpha;z)
, 
cubical-term: {X ⊢ _:AF}
, 
cubical-type-at: A(a)
, 
cubical-type: {X ⊢ _}
, 
cube-set-restriction: f(s)
, 
I-cube: X(I)
, 
cubical-set: CubicalSet
, 
iota: iota(x)
, 
coordinate_name: Cname
, 
l_member: (x ∈ l)
, 
cons: [a / b]
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
named-path: named-path(X;A;a;b;I;alpha;z)
, 
prop: ℙ
Lemmas referenced : 
name-path-endpoints_wf, 
equal_wf, 
cubical-type-at_wf, 
cons_wf, 
coordinate_name_wf, 
cube-set-restriction_wf, 
iota_wf, 
named-path_wf, 
not_wf, 
l_member_wf, 
I-cube_wf, 
list_wf, 
cubical-term_wf, 
cubical-type_wf, 
cubical-set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[I:Cname  List].  \mforall{}[alpha:X(I)].  \mforall{}[z:Cname].
    \mforall{}[p:named-path(X;A;a;b;I;alpha;z)].  \mforall{}[q:A(iota(z)(alpha))].    p  =  q  supposing  p  =  q 
    supposing  \mneg{}(z  \mmember{}  I)
Date html generated:
2016_06_16-PM-07_28_02
Last ObjectModification:
2015_12_28-PM-04_14_29
Theory : cubical!sets
Home
Index