Nuprl Lemma : extend-A-open-box_wf

X:CubicalSet. ∀A:{X ⊢ _}. ∀I:Cname List. ∀alpha:X(I).
  ∀[J:Cname List]. ∀[x:nameset(I)]. ∀[i:ℕ2]. ∀[bx:A-open-box(X;A;I;alpha;J;x;i)]. ∀[f1,f2:A-face(X;A;I;alpha)].
  ∀[z:nameset(I)].
    extend-A-open-box(bx;f1;f2) ∈ A-open-box(X;A;I;alpha;[z J];x;i) 
    supposing ((¬(z ∈ J))
              ∧ (A-face-name(f1) = <z, 0> ∈ (nameset(I) × ℕ2))
              ∧ (A-face-name(f2) = <z, 1> ∈ (nameset(I) × ℕ2)))
    ∧ (x z ∈ Cname))
    ∧ (∀f∈bx.A-face-compatible(X;A;I;alpha;f1;f) ∧ A-face-compatible(X;A;I;alpha;f2;f))


Proof




Definitions occuring in Statement :  extend-A-open-box: extend-A-open-box(bx;f1;f2) A-open-box: A-open-box(X;A;I;alpha;J;x;i) A-face-compatible: A-face-compatible(X;A;I;alpha;f1;f2) A-face-name: A-face-name(f) A-face: A-face(X;A;I;alpha) cubical-type: {X ⊢ _} I-cube: X(I) cubical-set: CubicalSet nameset: nameset(L) coordinate_name: Cname l_all: (∀x∈L.P[x]) l_member: (x ∈ l) cons: [a b] list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A and: P ∧ Q member: t ∈ T pair: <a, b> product: x:A × B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q A-open-box: A-open-box(X;A;I;alpha;J;x;i) nameset: nameset(L) extend-A-open-box: extend-A-open-box(bx;f1;f2) A-adjacent-compatible: A-adjacent-compatible(X;A;I;alpha;L) pairwise: (∀x,y∈L.  P[x; y]) not: ¬A implies:  Q iff: ⇐⇒ Q or: P ∨ Q false: False prop: rev_implies:  Q cand: c∧ B so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T subtype_rel: A ⊆B so_apply: x[s] coordinate_name: Cname int_upper: {i...} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] A-face: A-face(X;A;I;alpha) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] respects-equality: respects-equality(S;T) sq_type: SQType(T) guard: {T} top: Top sq_stable: SqStable(P) subtract: m cons: [a b] select: L[n] spreadn: spread3 A-face-compatible: A-face-compatible(X;A;I;alpha;f1;f2) pi2: snd(t) pi1: fst(t) A-face-name: A-face-name(f) ge: i ≥  l_all: (∀x∈L.P[x]) uiff: uiff(P;Q) nat_plus: + nat: less_than': less_than'(a;b) l_exists: (∃x∈L. P[x]) true: True l_member: (x ∈ l)
Lemmas referenced :  cons_wf A-face_wf cons_member coordinate_name_wf l_member_wf l_subset_cons A-adjacent-compatible_wf istype-void l_subset_wf nameset_wf l_exists_wf equal_wf int_seg_wf A-face-name_wf nameset_subtype l_all_wf2 not_wf subtract_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf decidable__lt istype-le istype-less_than pi1_wf_top subtype_rel_product cubical-type-at_wf list-diff_wf cname_deq_wf nil_wf cube-set-restriction_wf face-map_wf2 top_wf pairwise_wf2 respects-equality-product respects-equality-trivial subtype-base-respects-equality int_subtype_base istype-base A-face-compatible_wf A-open-box_wf I-cube_wf list_wf cubical-type_wf cubical-set_wf length_wf decidable__equal_int subtype_base_sq length_of_cons_lemma decidable__equal-coordinate_name sq_stable__l_member sq_stable__le int_formula_prop_eq_lemma intformeq_wf lelt_wf set_subtype_base le_wf nameset_subtype_base subtype_rel_universe1 pi2_wf int_term_value_add_lemma itermAdd_wf non_neg_length select-cons-tl l_all_cons int_seg_cases int_seg_subtype_special select_wf false_wf add-is-int-iff nat_plus_properties length_wf_nat add_nat_wf add_nat_plus istype-false zero-add add-commutes add-swap add-associates respects-equality-set-trivial2 respects-equality-set add-member-int_seg2 squash_wf true_wf istype-universe select_cons_tl subtype_rel_self iff_weakening_equal nat_properties add-subtract-cancel less_than_wf and_wf product_subtype_base pairwise-cons subtype_rel_list
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt introduction cut sqequalHypSubstitution productElimination thin setElimination rename dependent_set_memberEquality_alt extract_by_obid isectElimination hypothesisEquality hypothesis independent_pairFormation promote_hyp independent_functionElimination dependent_functionElimination unionElimination voidElimination universeIsType sqequalRule productIsType functionIsType because_Cache lambdaEquality_alt productEquality imageElimination independent_pairEquality applyEquality independent_isectElimination setIsType inhabitedIsType natural_numberEquality approximateComputation dependent_pairFormation_alt int_eqEquality Error :memTop,  instantiate cumulativity axiomEquality equalityTransitivity equalitySymmetry equalityIstype intEquality sqequalBase isect_memberEquality_alt isectIsTypeImplies addEquality baseClosed imageMemberEquality applyLambdaEquality baseApply closedConclusion hypothesis_subsumption pointwiseFunctionality universeEquality inlFormation_alt inrFormation_alt hyp_replacement

Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}I:Cname  List.  \mforall{}alpha:X(I).
    \mforall{}[J:Cname  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[bx:A-open-box(X;A;I;alpha;J;x;i)].
    \mforall{}[f1,f2:A-face(X;A;I;alpha)].  \mforall{}[z:nameset(I)].
        extend-A-open-box(bx;f1;f2)  \mmember{}  A-open-box(X;A;I;alpha;[z  /  J];x;i) 
        supposing  ((\mneg{}(z  \mmember{}  J))  \mwedge{}  (A-face-name(f1)  =  <z,  0>)  \mwedge{}  (A-face-name(f2)  =  <z,  1>))
        \mwedge{}  (\mneg{}(x  =  z))
        \mwedge{}  (\mforall{}f\mmember{}bx.A-face-compatible(X;A;I;alpha;f1;f)  \mwedge{}  A-face-compatible(X;A;I;alpha;f2;f))



Date html generated: 2020_05_21-AM-10_52_01
Last ObjectModification: 2020_01_05-AM-00_09_15

Theory : cubical!sets


Home Index