Nuprl Lemma : extend-A-open-box_wf
∀X:CubicalSet. ∀A:{X ⊢ _}. ∀I:Cname List. ∀alpha:X(I).
  ∀[J:Cname List]. ∀[x:nameset(I)]. ∀[i:ℕ2]. ∀[bx:A-open-box(X;A;I;alpha;J;x;i)]. ∀[f1,f2:A-face(X;A;I;alpha)].
  ∀[z:nameset(I)].
    extend-A-open-box(bx;f1;f2) ∈ A-open-box(X;A;I;alpha;[z / J];x;i) 
    supposing ((¬(z ∈ J))
              ∧ (A-face-name(f1) = <z, 0> ∈ (nameset(I) × ℕ2))
              ∧ (A-face-name(f2) = <z, 1> ∈ (nameset(I) × ℕ2)))
    ∧ (¬(x = z ∈ Cname))
    ∧ (∀f∈bx.A-face-compatible(X;A;I;alpha;f1;f) ∧ A-face-compatible(X;A;I;alpha;f2;f))
Proof
Definitions occuring in Statement : 
extend-A-open-box: extend-A-open-box(bx;f1;f2), 
A-open-box: A-open-box(X;A;I;alpha;J;x;i), 
A-face-compatible: A-face-compatible(X;A;I;alpha;f1;f2), 
A-face-name: A-face-name(f), 
A-face: A-face(X;A;I;alpha), 
cubical-type: {X ⊢ _}, 
I-cube: X(I), 
cubical-set: CubicalSet, 
nameset: nameset(L), 
coordinate_name: Cname, 
l_all: (∀x∈L.P[x]), 
l_member: (x ∈ l), 
cons: [a / b], 
list: T List, 
int_seg: {i..j-}, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
not: ¬A, 
and: P ∧ Q, 
member: t ∈ T, 
pair: <a, b>, 
product: x:A × B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
and: P ∧ Q, 
A-open-box: A-open-box(X;A;I;alpha;J;x;i), 
nameset: nameset(L), 
extend-A-open-box: extend-A-open-box(bx;f1;f2), 
A-adjacent-compatible: A-adjacent-compatible(X;A;I;alpha;L), 
pairwise: (∀x,y∈L.  P[x; y]), 
not: ¬A, 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
false: False, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
coordinate_name: Cname, 
int_upper: {i...}, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
A-face: A-face(X;A;I;alpha), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
respects-equality: respects-equality(S;T), 
sq_type: SQType(T), 
guard: {T}, 
top: Top, 
sq_stable: SqStable(P), 
subtract: n - m, 
cons: [a / b], 
select: L[n], 
spreadn: spread3, 
A-face-compatible: A-face-compatible(X;A;I;alpha;f1;f2), 
pi2: snd(t), 
pi1: fst(t), 
A-face-name: A-face-name(f), 
ge: i ≥ j , 
l_all: (∀x∈L.P[x]), 
uiff: uiff(P;Q), 
nat_plus: ℕ+, 
nat: ℕ, 
less_than': less_than'(a;b), 
l_exists: (∃x∈L. P[x]), 
true: True, 
l_member: (x ∈ l)
Lemmas referenced : 
cons_wf, 
A-face_wf, 
cons_member, 
coordinate_name_wf, 
l_member_wf, 
l_subset_cons, 
A-adjacent-compatible_wf, 
istype-void, 
l_subset_wf, 
nameset_wf, 
l_exists_wf, 
equal_wf, 
int_seg_wf, 
A-face-name_wf, 
nameset_subtype, 
l_all_wf2, 
not_wf, 
subtract_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
decidable__lt, 
istype-le, 
istype-less_than, 
pi1_wf_top, 
subtype_rel_product, 
cubical-type-at_wf, 
list-diff_wf, 
cname_deq_wf, 
nil_wf, 
cube-set-restriction_wf, 
face-map_wf2, 
top_wf, 
pairwise_wf2, 
respects-equality-product, 
respects-equality-trivial, 
subtype-base-respects-equality, 
int_subtype_base, 
istype-base, 
A-face-compatible_wf, 
A-open-box_wf, 
I-cube_wf, 
list_wf, 
cubical-type_wf, 
cubical-set_wf, 
length_wf, 
decidable__equal_int, 
subtype_base_sq, 
length_of_cons_lemma, 
decidable__equal-coordinate_name, 
sq_stable__l_member, 
sq_stable__le, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
lelt_wf, 
set_subtype_base, 
le_wf, 
nameset_subtype_base, 
subtype_rel_universe1, 
pi2_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
non_neg_length, 
select-cons-tl, 
l_all_cons, 
int_seg_cases, 
int_seg_subtype_special, 
select_wf, 
false_wf, 
add-is-int-iff, 
nat_plus_properties, 
length_wf_nat, 
add_nat_wf, 
add_nat_plus, 
istype-false, 
zero-add, 
add-commutes, 
add-swap, 
add-associates, 
respects-equality-set-trivial2, 
respects-equality-set, 
add-member-int_seg2, 
squash_wf, 
true_wf, 
istype-universe, 
select_cons_tl, 
subtype_rel_self, 
iff_weakening_equal, 
nat_properties, 
add-subtract-cancel, 
less_than_wf, 
and_wf, 
product_subtype_base, 
pairwise-cons, 
subtype_rel_list
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
promote_hyp, 
independent_functionElimination, 
dependent_functionElimination, 
unionElimination, 
voidElimination, 
universeIsType, 
sqequalRule, 
productIsType, 
functionIsType, 
because_Cache, 
lambdaEquality_alt, 
productEquality, 
imageElimination, 
independent_pairEquality, 
applyEquality, 
independent_isectElimination, 
setIsType, 
inhabitedIsType, 
natural_numberEquality, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
instantiate, 
cumulativity, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
intEquality, 
sqequalBase, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
addEquality, 
baseClosed, 
imageMemberEquality, 
applyLambdaEquality, 
baseApply, 
closedConclusion, 
hypothesis_subsumption, 
pointwiseFunctionality, 
universeEquality, 
inlFormation_alt, 
inrFormation_alt, 
hyp_replacement
Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}I:Cname  List.  \mforall{}alpha:X(I).
    \mforall{}[J:Cname  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[bx:A-open-box(X;A;I;alpha;J;x;i)].
    \mforall{}[f1,f2:A-face(X;A;I;alpha)].  \mforall{}[z:nameset(I)].
        extend-A-open-box(bx;f1;f2)  \mmember{}  A-open-box(X;A;I;alpha;[z  /  J];x;i) 
        supposing  ((\mneg{}(z  \mmember{}  J))  \mwedge{}  (A-face-name(f1)  =  <z,  0>)  \mwedge{}  (A-face-name(f2)  =  <z,  1>))
        \mwedge{}  (\mneg{}(x  =  z))
        \mwedge{}  (\mforall{}f\mmember{}bx.A-face-compatible(X;A;I;alpha;f1;f)  \mwedge{}  A-face-compatible(X;A;I;alpha;f2;f))
Date html generated:
2020_05_21-AM-10_52_01
Last ObjectModification:
2020_01_05-AM-00_09_15
Theory : cubical!sets
Home
Index