Nuprl Lemma : int_seg_subtype_special
∀[n,m:ℤ].  ({n + 1..m-} ⊆r {n..m-})
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
lelt: i ≤ j < k
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
subtype_rel_sets, 
and_wf, 
le_wf, 
less_than_wf, 
decidable__le, 
istype-false, 
not-le-2, 
condition-implies-le, 
minus-add, 
istype-void, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
le-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
because_Cache, 
Error :lambdaEquality_alt, 
addEquality, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
Error :inhabitedIsType, 
independent_isectElimination, 
setElimination, 
rename, 
Error :setIsType, 
Error :universeIsType, 
Error :lambdaFormation_alt, 
productElimination, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
voidElimination, 
independent_functionElimination, 
applyEquality, 
Error :isect_memberEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
minusEquality, 
axiomEquality
Latex:
\mforall{}[n,m:\mBbbZ{}].    (\{n  +  1..m\msupminus{}\}  \msubseteq{}r  \{n..m\msupminus{}\})
Date html generated:
2019_06_20-AM-11_23_48
Last ObjectModification:
2018_09_28-AM-11_05_37
Theory : arithmetic
Home
Index