Nuprl Lemma : int_seg_subtype_special

[n,m:ℤ].  ({n 1..m-} ⊆{n..m-})


Proof




Definitions occuring in Statement :  int_seg: {i..j-} subtype_rel: A ⊆B uall: [x:A]. B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_seg: {i..j-} so_lambda: λ2x.t[x] lelt: i ≤ j < k so_apply: x[s] uimplies: supposing a subtype_rel: A ⊆B and: P ∧ Q prop: all: x:A. B[x] implies:  Q le: A ≤ B decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) subtract: m top: Top less_than': less_than'(a;b) true: True
Lemmas referenced :  subtype_rel_sets and_wf le_wf less_than_wf decidable__le istype-false not-le-2 condition-implies-le minus-add istype-void minus-one-mul add-swap minus-one-mul-top add-commutes add_functionality_wrt_le add-associates le-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin intEquality because_Cache Error :lambdaEquality_alt,  addEquality hypothesisEquality natural_numberEquality hypothesis Error :inhabitedIsType,  independent_isectElimination setElimination rename Error :setIsType,  Error :universeIsType,  Error :lambdaFormation_alt,  productElimination independent_pairFormation dependent_functionElimination unionElimination voidElimination independent_functionElimination applyEquality Error :isect_memberEquality_alt,  equalityTransitivity equalitySymmetry minusEquality axiomEquality

Latex:
\mforall{}[n,m:\mBbbZ{}].    (\{n  +  1..m\msupminus{}\}  \msubseteq{}r  \{n..m\msupminus{}\})



Date html generated: 2019_06_20-AM-11_23_48
Last ObjectModification: 2018_09_28-AM-11_05_37

Theory : arithmetic


Home Index