Nuprl Lemma : respects-equality-product

[A,A':Type]. ∀[B:A ⟶ Type]. ∀[B':A' ⟶ Type].
  (respects-equality(A;A')
   (∀a:Base. ((a ∈ A)  (a ∈ A')  respects-equality(B[a];B'[a])))
   respects-equality(a:A × B[a];a:A' × B'[a]))


Proof




Definitions occuring in Statement :  respects-equality: respects-equality(S;T) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q respects-equality: respects-equality(S;T) all: x:A. B[x] pi1: fst(t) pi2: snd(t) so_apply: x[s]
Lemmas referenced :  istype-base respects-equality_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  sqequalHypSubstitution equalityTransitivity hypothesis equalitySymmetry Error :inhabitedIsType,  thin productElimination sqequalRule Error :equalityIsType1,  hypothesisEquality dependent_functionElimination independent_functionElimination applyLambdaEquality Error :dependent_pairEquality_alt,  Error :universeIsType,  applyEquality Error :equalityIstype,  Error :productIsType,  because_Cache sqequalBase Error :functionIsType,  extract_by_obid isectElimination Error :lambdaEquality_alt,  axiomEquality Error :functionIsTypeImplies,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  instantiate universeEquality baseApply closedConclusion baseClosed

Latex:
\mforall{}[A,A':Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[B':A'  {}\mrightarrow{}  Type].
    (respects-equality(A;A')
    {}\mRightarrow{}  (\mforall{}a:Base.  ((a  \mmember{}  A)  {}\mRightarrow{}  (a  \mmember{}  A')  {}\mRightarrow{}  respects-equality(B[a];B'[a])))
    {}\mRightarrow{}  respects-equality(a:A  \mtimes{}  B[a];a:A'  \mtimes{}  B'[a]))



Date html generated: 2019_06_20-AM-11_14_44
Last ObjectModification: 2018_11_22-PM-11_26_42

Theory : core_2


Home Index