Nuprl Lemma : respects-equality-product
∀[A,A':Type]. ∀[B:A ⟶ Type]. ∀[B':A' ⟶ Type].
  (respects-equality(A;A')
  
⇒ (∀a:Base. ((a ∈ A) 
⇒ (a ∈ A') 
⇒ respects-equality(B[a];B'[a])))
  
⇒ respects-equality(a:A × B[a];a:A' × B'[a]))
Proof
Definitions occuring in Statement : 
respects-equality: respects-equality(S;T)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
respects-equality: respects-equality(S;T)
, 
all: ∀x:A. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
so_apply: x[s]
Lemmas referenced : 
istype-base, 
respects-equality_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
sqequalHypSubstitution, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
Error :inhabitedIsType, 
thin, 
productElimination, 
sqequalRule, 
Error :equalityIsType1, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination, 
applyLambdaEquality, 
Error :dependent_pairEquality_alt, 
Error :universeIsType, 
applyEquality, 
Error :equalityIstype, 
Error :productIsType, 
because_Cache, 
sqequalBase, 
Error :functionIsType, 
extract_by_obid, 
isectElimination, 
Error :lambdaEquality_alt, 
axiomEquality, 
Error :functionIsTypeImplies, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
instantiate, 
universeEquality, 
baseApply, 
closedConclusion, 
baseClosed
Latex:
\mforall{}[A,A':Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[B':A'  {}\mrightarrow{}  Type].
    (respects-equality(A;A')
    {}\mRightarrow{}  (\mforall{}a:Base.  ((a  \mmember{}  A)  {}\mRightarrow{}  (a  \mmember{}  A')  {}\mRightarrow{}  respects-equality(B[a];B'[a])))
    {}\mRightarrow{}  respects-equality(a:A  \mtimes{}  B[a];a:A'  \mtimes{}  B'[a]))
Date html generated:
2019_06_20-AM-11_14_44
Last ObjectModification:
2018_11_22-PM-11_26_42
Theory : core_2
Home
Index