Nuprl Lemma : respects-equality_wf

[S,T:Type].  (respects-equality(S;T) ∈ Type)


Proof




Definitions occuring in Statement :  respects-equality: respects-equality(S;T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T respects-equality: respects-equality(S;T) all: x:A. B[x] implies:  Q prop:
Lemmas referenced :  base_wf equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule functionEquality extract_by_obid hypothesis because_Cache sqequalHypSubstitution isectElimination thin axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  hypothesisEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :universeIsType,  universeEquality

Latex:
\mforall{}[S,T:Type].    (respects-equality(S;T)  \mmember{}  Type)



Date html generated: 2019_06_20-AM-11_13_39
Last ObjectModification: 2018_11_21-AM-10_43_57

Theory : core_2


Home Index