Nuprl Lemma : respects-equality_wf
∀[S,T:Type].  (respects-equality(S;T) ∈ Type)
Proof
Definitions occuring in Statement : 
respects-equality: respects-equality(S;T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
respects-equality: respects-equality(S;T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
base_wf, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
extract_by_obid, 
hypothesis, 
because_Cache, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
hypothesisEquality, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :universeIsType, 
universeEquality
Latex:
\mforall{}[S,T:Type].    (respects-equality(S;T)  \mmember{}  Type)
Date html generated:
2019_06_20-AM-11_13_39
Last ObjectModification:
2018_11_21-AM-10_43_57
Theory : core_2
Home
Index