Nuprl Lemma : iota-face-map

[I:Cname List]. ∀[x,y:Cname]. ∀[i:ℕ2].
  ((x:=i) iota(y)) (iota(y) (x:=i)) ∈ name-morph(I;[y I-[x]]) supposing ¬(x y ∈ Cname)


Proof




Definitions occuring in Statement :  name-comp: (f g) iota: iota(x) face-map: (x:=i) name-morph: name-morph(I;J) cname_deq: CnameDeq coordinate_name: Cname list-diff: as-bs cons: [a b] nil: [] list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] not: ¬A natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: subtype_rel: A ⊆B coordinate_name: Cname int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] squash: T not: ¬A implies:  Q guard: {T} false: False int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top true: True iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) name-morph: name-morph(I;J) face-map: (x:=i) iota: iota(x) name-comp: (f g) compose: g uext: uext(g) nameset: nameset(L) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff or: P ∨ Q bnot: ¬bb assert: b isname: isname(z) cand: c∧ B nequal: a ≠ b ∈ 
Lemmas referenced :  name-morphs-equal cons_wf list-diff_wf coordinate_name_wf cname_deq_wf nil_wf name-comp_wf face-map_wf2 iota_wf not_wf equal_wf int_seg_wf subtype_base_sq list_wf list_subtype_base set_subtype_base le_wf int_subtype_base squash_wf true_wf list-diff-cons-single int_seg_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf iff_weakening_equal name-morph_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int isname-nameset eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int nameset_wf le_int_wf assert_of_le_int nsub2_subtype_extd-nameset nameset_subtype l_subset_right_cons_trivial nameset_subtype_extd-nameset member-list-diff member_singleton l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache hypothesis independent_isectElimination sqequalRule isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry natural_numberEquality applyEquality instantiate cumulativity intEquality lambdaEquality imageElimination universeEquality lambdaFormation applyLambdaEquality setElimination rename imageMemberEquality baseClosed productElimination dependent_pairFormation int_eqEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation independent_functionElimination dependent_set_memberEquality computeAll functionExtensionality unionElimination equalityElimination promote_hyp addLevel impliesFunctionality

Latex:
\mforall{}[I:Cname  List].  \mforall{}[x,y:Cname].  \mforall{}[i:\mBbbN{}2].    ((x:=i)  o  iota(y))  =  (iota(y)  o  (x:=i))  supposing  \mneg{}(x  =  y)



Date html generated: 2017_10_05-AM-10_08_17
Last ObjectModification: 2017_07_28-AM-11_16_49

Theory : cubical!sets


Home Index