Nuprl Lemma : list-diff-disjoint

[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs:T List].  as-bs as ∈ (T List) supposing l_disjoint(T;as;bs)


Proof




Definitions occuring in Statement :  list-diff: as-bs l_disjoint: l_disjoint(T;l1;l2) list: List deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a prop: so_apply: x[s] implies:  Q list-diff: as-bs all: x:A. B[x] top: Top l_disjoint: l_disjoint(T;l1;l2) not: ¬A and: P ∧ Q cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q guard: {T} or: P ∨ Q false: False squash: T true: True subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  list_induction uall_wf list_wf isect_wf l_disjoint_wf equal_wf list-diff_wf filter_nil_lemma nil_wf cons_wf deq_wf cons_member l_member_wf squash_wf true_wf list-diff-cons iff_weakening_equal deq-member_wf bool_wf eqtt_to_assert assert-deq-member eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache lambdaFormation rename independent_isectElimination universeEquality productElimination inrFormation independent_pairFormation productEquality applyEquality imageElimination natural_numberEquality imageMemberEquality baseClosed unionElimination equalityElimination dependent_pairFormation promote_hyp instantiate inlFormation

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:T  List].    as-bs  =  as  supposing  l\_disjoint(T;as;bs)



Date html generated: 2017_04_17-AM-09_13_17
Last ObjectModification: 2017_02_27-PM-05_20_31

Theory : decidable!equality


Home Index