Nuprl Lemma : l_disjoint_wf
∀[T:Type]. ∀[l,l':T List].  (l_disjoint(T;l;l') ∈ ℙ)
Proof
Definitions occuring in Statement : 
l_disjoint: l_disjoint(T;l1;l2)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
l_disjoint: l_disjoint(T;l1;l2)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
not_wf, 
l_member_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
productEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
isect_memberEquality, 
Error :universeIsType, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[l,l':T  List].    (l\_disjoint(T;l;l')  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-01_26_52
Last ObjectModification:
2018_09_26-PM-05_31_39
Theory : list_1
Home
Index