Nuprl Lemma : l_disjoint_wf

[T:Type]. ∀[l,l':T List].  (l_disjoint(T;l;l') ∈ ℙ)


Proof




Definitions occuring in Statement :  l_disjoint: l_disjoint(T;l1;l2) list: List uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T l_disjoint: l_disjoint(T;l1;l2) so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s]
Lemmas referenced :  all_wf not_wf l_member_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality productEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  isect_memberEquality Error :universeIsType,  because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[l,l':T  List].    (l\_disjoint(T;l;l')  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-01_26_52
Last ObjectModification: 2018_09_26-PM-05_31_39

Theory : list_1


Home Index