Step * of Lemma list-diff-disjoint

[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs:T List].  as-bs as ∈ (T List) supposing l_disjoint(T;as;bs)
BY
(InductionOnList
   THEN Try ((Unfold `list-diff` THEN Reduce THEN Complete (Auto)))
   THEN RepeatFor (ParallelLast)) }

1
.....antecedent..... 
1. Type
2. eq EqDecider(T)
3. T
4. List
5. ∀[bs:T List]. v-bs v ∈ (T List) supposing l_disjoint(T;v;bs)
6. bs List
7. l_disjoint(T;[u v];bs)
⊢ l_disjoint(T;v;bs)

2
1. Type
2. eq EqDecider(T)
3. T
4. List
5. ∀[bs:T List]. v-bs v ∈ (T List) supposing l_disjoint(T;v;bs)
6. bs List
7. l_disjoint(T;[u v];bs)
8. v-bs v ∈ (T List)
⊢ [u v]-bs [u v] ∈ (T List)


Latex:


Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:T  List].    as-bs  =  as  supposing  l\_disjoint(T;as;bs)


By


Latex:
(InductionOnList
  THEN  Try  ((Unfold  `list-diff`  0  THEN  Reduce  0  THEN  Complete  (Auto)))
  THEN  RepeatFor  2  (ParallelLast))




Home Index