Nuprl Lemma : name-morph_subtype
∀[I,J,A,B:Cname List].
  (name-morph(I;J) ⊆r name-morph(A;B)) supposing ((nameset(A) ⊆r nameset(I)) and (nameset(J) ⊆r nameset(B)))
Proof
Definitions occuring in Statement : 
name-morph: name-morph(I;J)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
list: T List
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
extd-nameset: extd-nameset(L)
, 
and: P ∧ Q
, 
name-morph: name-morph(I;J)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
subtype_rel_wf, 
nameset_wf, 
subtype_rel_b-union, 
int_seg_wf, 
subtype_rel_self, 
name-morph_wf, 
subtype_rel_dep_function, 
extd-nameset_wf, 
assert_wf, 
isname_wf, 
subtype_base_sq, 
extd-nameset_subtype_base, 
nameset_subtype_base, 
equal_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
axiomEquality, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
applyEquality, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
instantiate, 
cumulativity, 
functionEquality
Latex:
\mforall{}[I,J,A,B:Cname  List].
    (name-morph(I;J)  \msubseteq{}r  name-morph(A;B))  supposing 
          ((nameset(A)  \msubseteq{}r  nameset(I))  and 
          (nameset(J)  \msubseteq{}r  nameset(B)))
Date html generated:
2016_05_20-AM-09_29_45
Last ObjectModification:
2015_12_28-PM-04_47_09
Theory : cubical!sets
Home
Index