Nuprl Lemma : name-morph_subtype

[I,J,A,B:Cname List].
  (name-morph(I;J) ⊆name-morph(A;B)) supposing ((nameset(A) ⊆nameset(I)) and (nameset(J) ⊆nameset(B)))


Proof




Definitions occuring in Statement :  name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B extd-nameset: extd-nameset(L) and: P ∧ Q name-morph: name-morph(I;J) so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] implies:  Q prop: sq_type: SQType(T) guard: {T}
Lemmas referenced :  subtype_rel_wf nameset_wf subtype_rel_b-union int_seg_wf subtype_rel_self name-morph_wf subtype_rel_dep_function extd-nameset_wf assert_wf isname_wf subtype_base_sq extd-nameset_subtype_base nameset_subtype_base equal_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule axiomEquality hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry natural_numberEquality independent_isectElimination independent_pairFormation lambdaEquality setElimination rename dependent_set_memberEquality applyEquality lambdaFormation dependent_functionElimination independent_functionElimination instantiate cumulativity functionEquality

Latex:
\mforall{}[I,J,A,B:Cname  List].
    (name-morph(I;J)  \msubseteq{}r  name-morph(A;B))  supposing 
          ((nameset(A)  \msubseteq{}r  nameset(I))  and 
          (nameset(J)  \msubseteq{}r  nameset(B)))



Date html generated: 2016_05_20-AM-09_29_45
Last ObjectModification: 2015_12_28-PM-04_47_09

Theory : cubical!sets


Home Index