Nuprl Lemma : fills-A-open-box_wf

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[I:Cname List]. ∀[alpha:X(I)]. ∀[J:Cname List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
[cube:A(alpha)]. ∀[bx:A-open-box(X;A;I;alpha;J;x;i)].
  fills-A-open-box(X;A;I;alpha;bx;cube) ∈ ℙ supposing l_subset(Cname;J;I)


Proof




Definitions occuring in Statement :  fills-A-open-box: fills-A-open-box(X;A;I;alpha;bx;cube) A-open-box: A-open-box(X;A;I;alpha;J;x;i) cubical-type-at: A(a) cubical-type: {X ⊢ _} I-cube: X(I) cubical-set: CubicalSet nameset: nameset(L) coordinate_name: Cname l_subset: l_subset(T;as;bs) list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] prop: member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fills-A-open-box: fills-A-open-box(X;A;I;alpha;bx;cube) A-open-box: A-open-box(X;A;I;alpha;J;x;i) prop: all: x:A. B[x]
Lemmas referenced :  fills-A-faces_wf l_subset_wf coordinate_name_wf A-open-box_wf cubical-type-at_wf int_seg_wf nameset_wf list_wf I-cube_wf cubical-type_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache dependent_functionElimination natural_numberEquality

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[I:Cname  List].  \mforall{}[alpha:X(I)].  \mforall{}[J:Cname  List].  \mforall{}[x:nameset(I)].
\mforall{}[i:\mBbbN{}2].  \mforall{}[cube:A(alpha)].  \mforall{}[bx:A-open-box(X;A;I;alpha;J;x;i)].
    fills-A-open-box(X;A;I;alpha;bx;cube)  \mmember{}  \mBbbP{}  supposing  l\_subset(Cname;J;I)



Date html generated: 2016_06_16-PM-06_43_05
Last ObjectModification: 2015_12_28-PM-04_26_11

Theory : cubical!sets


Home Index