Nuprl Lemma : A-open-box-equal
∀X:CubicalSet. ∀A:{X ⊢ _}. ∀I:Cname List. ∀alpha:X(I).
  ∀[J:Cname List]. ∀[x:nameset(I)]. ∀[i:ℕ2]. ∀[bx1:A-open-box(X;A;I;alpha;J;x;i)]. ∀[bx2:A-face(X;A;I;alpha) List].
    bx1 = bx2 ∈ A-open-box(X;A;I;alpha;J;x;i) supposing bx1 = bx2 ∈ (A-face(X;A;I;alpha) List)
Proof
Definitions occuring in Statement : 
A-open-box: A-open-box(X;A;I;alpha;J;x;i)
, 
A-face: A-face(X;A;I;alpha)
, 
cubical-type: {X ⊢ _}
, 
I-cube: X(I)
, 
cubical-set: CubicalSet
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
list: T List
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
A-open-box: A-open-box(X;A;I;alpha;J;x;i)
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
nameset: nameset(L)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
A-face: A-face(X;A;I;alpha)
, 
pi1: fst(t)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
cubical-set_wf, 
cubical-type_wf, 
I-cube_wf, 
A-open-box_wf, 
list_wf, 
pairwise_wf2, 
cons_wf, 
lelt_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
sq_stable__le, 
decidable__equal-coordinate_name, 
sq_stable__l_member, 
int_seg_properties, 
subtract_wf, 
l_all_wf2, 
nameset_subtype, 
A-face-name_wf, 
equal_wf, 
A-face_wf, 
l_exists_wf, 
int_seg_wf, 
nameset_wf, 
all_wf, 
l_subset_wf, 
coordinate_name_wf, 
l_member_wf, 
not_wf, 
A-adjacent-compatible_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
hypothesis, 
productElimination, 
productEquality, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
cumulativity, 
universeEquality, 
sqequalRule, 
because_Cache, 
natural_numberEquality, 
independent_pairEquality, 
independent_isectElimination, 
setEquality, 
independent_pairFormation, 
dependent_functionElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
instantiate, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}I:Cname  List.  \mforall{}alpha:X(I).
    \mforall{}[J:Cname  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[bx1:A-open-box(X;A;I;alpha;J;x;i)].
    \mforall{}[bx2:A-face(X;A;I;alpha)  List].
        bx1  =  bx2  supposing  bx1  =  bx2
Date html generated:
2016_06_16-PM-05_56_26
Last ObjectModification:
2016_01_18-PM-04_53_20
Theory : cubical!sets
Home
Index