Nuprl Lemma : A-open-box-equal

X:CubicalSet. ∀A:{X ⊢ _}. ∀I:Cname List. ∀alpha:X(I).
  ∀[J:Cname List]. ∀[x:nameset(I)]. ∀[i:ℕ2]. ∀[bx1:A-open-box(X;A;I;alpha;J;x;i)]. ∀[bx2:A-face(X;A;I;alpha) List].
    bx1 bx2 ∈ A-open-box(X;A;I;alpha;J;x;i) supposing bx1 bx2 ∈ (A-face(X;A;I;alpha) List)


Proof




Definitions occuring in Statement :  A-open-box: A-open-box(X;A;I;alpha;J;x;i) A-face: A-face(X;A;I;alpha) cubical-type: {X ⊢ _} I-cube: X(I) cubical-set: CubicalSet nameset: nameset(L) coordinate_name: Cname list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a A-open-box: A-open-box(X;A;I;alpha;J;x;i) and: P ∧ Q subtype_rel: A ⊆B prop: nameset: nameset(L) so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k guard: {T} implies:  Q sq_stable: SqStable(P) squash: T coordinate_name: Cname int_upper: {i...} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top A-face: A-face(X;A;I;alpha) pi1: fst(t) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  cubical-set_wf cubical-type_wf I-cube_wf A-open-box_wf list_wf pairwise_wf2 cons_wf lelt_wf decidable__lt int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le sq_stable__le decidable__equal-coordinate_name sq_stable__l_member int_seg_properties subtract_wf l_all_wf2 nameset_subtype A-face-name_wf equal_wf A-face_wf l_exists_wf int_seg_wf nameset_wf all_wf l_subset_wf coordinate_name_wf l_member_wf not_wf A-adjacent-compatible_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality hypothesis productElimination productEquality lemma_by_obid isectElimination hypothesisEquality applyEquality lambdaEquality cumulativity universeEquality sqequalRule because_Cache natural_numberEquality independent_pairEquality independent_isectElimination setEquality independent_pairFormation dependent_functionElimination independent_functionElimination imageMemberEquality baseClosed imageElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll instantiate axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}I:Cname  List.  \mforall{}alpha:X(I).
    \mforall{}[J:Cname  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[bx1:A-open-box(X;A;I;alpha;J;x;i)].
    \mforall{}[bx2:A-face(X;A;I;alpha)  List].
        bx1  =  bx2  supposing  bx1  =  bx2



Date html generated: 2016_06_16-PM-05_56_26
Last ObjectModification: 2016_01_18-PM-04_53_20

Theory : cubical!sets


Home Index