Nuprl Lemma : extend-name-morph-irrelevant
∀I,K:Cname List. ∀f:name-morph(I;K).  (f = f[fresh-cname(I):=fresh-cname(K)] ∈ name-morph(I;K))
Proof
Definitions occuring in Statement : 
extend-name-morph: f[z1:=z2]
, 
name-morph: name-morph(I;J)
, 
fresh-cname: fresh-cname(I)
, 
coordinate_name: Cname
, 
list: T List
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
extend-name-morph: f[z1:=z2]
, 
nameset: nameset(L)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
not: ¬A
, 
false: False
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
name-morph: name-morph(I;J)
Lemmas referenced : 
name-morphs-equal, 
eq-cname_wf, 
fresh-cname_wf, 
coordinate_name_wf, 
not_wf, 
l_member_wf, 
bool_wf, 
eqtt_to_assert, 
assert-eq-cname, 
fresh-cname-not-equal2, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
nameset_wf, 
name-morph_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
functionExtensionality, 
sqequalRule, 
setElimination, 
rename, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
voidElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
because_Cache
Latex:
\mforall{}I,K:Cname  List.  \mforall{}f:name-morph(I;K).    (f  =  f[fresh-cname(I):=fresh-cname(K)])
Date html generated:
2017_10_05-AM-10_08_46
Last ObjectModification:
2017_07_28-AM-11_17_01
Theory : cubical!sets
Home
Index