Nuprl Lemma : Kan_id_filler_wf1

X:CubicalSet. ∀A:{X ⊢ _(Kan)}. ∀a,b:{X ⊢ _:Kan-type(A)}.
  (Kan_id_filler(X;A;a;b) ∈ I:(Cname List)
   ⟶ alpha:X(I)
   ⟶ J:(nameset(I) List)
   ⟶ x:nameset(I)
   ⟶ i:ℕ2
   ⟶ A-open-box(X;(Id_Kan-type(A) b);I;alpha;J;x;i)
   ⟶ I-path(X;Kan-type(A);a;b;I;alpha))


Proof




Definitions occuring in Statement :  Kan_id_filler: Kan_id_filler(X;A;a;b) cubical-identity: (Id_A b) I-path: I-path(X;A;a;b;I;alpha) Kan-type: Kan-type(Ak) Kan-cubical-type: {X ⊢ _(Kan)} A-open-box: A-open-box(X;A;I;alpha;J;x;i) cubical-term: {X ⊢ _:AF} I-cube: X(I) cubical-set: CubicalSet nameset: nameset(L) coordinate_name: Cname list: List int_seg: {i..j-} all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nameset: nameset(L) uimplies: supposing a subtype_rel: A ⊆B Kan_id_filler: Kan_id_filler(X;A;a;b) implies:  Q and: P ∧ Q A-open-box: A-open-box(X;A;I;alpha;J;x;i) sq_stable: SqStable(P) squash: T false: False not: ¬A so_apply: x[s] prop: so_lambda: λ2x.t[x] named-path: named-path(X;A;a;b;I;alpha;z) I-path: I-path(X;A;a;b;I;alpha) or: P ∨ Q rev_implies:  Q iff: ⇐⇒ Q fills-A-faces: fills-A-faces(X;A;I;alpha;bx;L) extend-A-open-box: extend-A-open-box(bx;f1;f2) lift-id-faces: lift-id-faces(X;A;I;alpha;box) fills-A-open-box: fills-A-open-box(X;A;I;alpha;bx;cube) cubical-id-box: cubical-id-box(X;A;a;b;I;alpha;box) cons: [a b] select: L[n] exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) int_upper: {i...} coordinate_name: Cname guard: {T} ge: i ≥  less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} top: Top l_all: (∀x∈L.P[x]) subtract: m true: True iota': iota'(I) name-path-endpoints: name-path-endpoints(X;A;a;b;I;alpha;z;omega) is-A-face: is-A-face(X;A;I;alpha;bx;f) term-A-face: term-A-face(a;I;alpha;i) spreadn: spread3 less_than: a < b cubical-term-at: u(a)
Lemmas referenced :  cubical-set_wf Kan-cubical-type_wf Kan-type_wf cubical-term_wf I-cube_wf list_wf int_seg_wf coordinate_name_wf nameset_wf subtype_rel_list cubical-identity_wf A-open-box_wf l_subset_cons_same fresh-cname_wf cons_wf sq_stable__l_subset decidable__equal-coordinate_name equal_wf l_member_wf not_wf set_wf named-path_wf name-path-endpoints_wf fills-A-open-box_wf cubical-type-at_wf cubical-id-box_wf l_subset_right_cons_trivial nameset_subtype cons_member iota_wf cube-set-restriction_wf Kanfiller_wf lelt_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf itermAdd_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt length_wf decidable__lt int_seg_properties A-face_wf non_neg_length map-length false_wf length_of_cons_lemma lift-id-face_wf map_wf iota'_wf add-fresh-cname_wf cube-set-restriction-id iota'-identity iff_weakening_equal face-map_wf cube-set-restriction-comp true_wf squash_wf add-remove-fresh-sq cubical-type-ap-morph_wf subtype_rel_weakening ext-eq_weakening cubical-term-at_wf
Rules used in proof :  hypothesisEquality thin isectElimination extract_by_obid introduction hypothesis sqequalHypSubstitution cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution natural_numberEquality sqequalRule rename setElimination independent_isectElimination applyEquality because_Cache dependent_functionElimination lambdaEquality independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination equalitySymmetry equalityTransitivity voidElimination dependent_pairEquality setEquality dependent_set_memberEquality inlFormation independent_pairFormation computeAll intEquality int_eqEquality dependent_pairFormation unionElimination addEquality voidEquality isect_memberEquality applyLambdaEquality hyp_replacement universeEquality promote_hyp

Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_(Kan)\}.  \mforall{}a,b:\{X  \mvdash{}  \_:Kan-type(A)\}.
    (Kan\_id\_filler(X;A;a;b)  \mmember{}  I:(Cname  List)
      {}\mrightarrow{}  alpha:X(I)
      {}\mrightarrow{}  J:(nameset(I)  List)
      {}\mrightarrow{}  x:nameset(I)
      {}\mrightarrow{}  i:\mBbbN{}2
      {}\mrightarrow{}  A-open-box(X;(Id\_Kan-type(A)  a  b);I;alpha;J;x;i)
      {}\mrightarrow{}  I-path(X;Kan-type(A);a;b;I;alpha))



Date html generated: 2018_05_23-PM-07_07_27
Last ObjectModification: 2018_05_17-PM-07_00_23

Theory : cubical!sets


Home Index