Nuprl Lemma : Kan_id_filler_wf1
∀X:CubicalSet. ∀A:{X ⊢ _(Kan)}. ∀a,b:{X ⊢ _:Kan-type(A)}.
  (Kan_id_filler(X;A;a;b) ∈ I:(Cname List)
   ⟶ alpha:X(I)
   ⟶ J:(nameset(I) List)
   ⟶ x:nameset(I)
   ⟶ i:ℕ2
   ⟶ A-open-box(X;(Id_Kan-type(A) a b);I;alpha;J;x;i)
   ⟶ I-path(X;Kan-type(A);a;b;I;alpha))
Proof
Definitions occuring in Statement : 
Kan_id_filler: Kan_id_filler(X;A;a;b)
, 
cubical-identity: (Id_A a b)
, 
I-path: I-path(X;A;a;b;I;alpha)
, 
Kan-type: Kan-type(Ak)
, 
Kan-cubical-type: {X ⊢ _(Kan)}
, 
A-open-box: A-open-box(X;A;I;alpha;J;x;i)
, 
cubical-term: {X ⊢ _:AF}
, 
I-cube: X(I)
, 
cubical-set: CubicalSet
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
list: T List
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nameset: nameset(L)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
Kan_id_filler: Kan_id_filler(X;A;a;b)
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
A-open-box: A-open-box(X;A;I;alpha;J;x;i)
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
false: False
, 
not: ¬A
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
named-path: named-path(X;A;a;b;I;alpha;z)
, 
I-path: I-path(X;A;a;b;I;alpha)
, 
or: P ∨ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
fills-A-faces: fills-A-faces(X;A;I;alpha;bx;L)
, 
extend-A-open-box: extend-A-open-box(bx;f1;f2)
, 
lift-id-faces: lift-id-faces(X;A;I;alpha;box)
, 
fills-A-open-box: fills-A-open-box(X;A;I;alpha;bx;cube)
, 
cubical-id-box: cubical-id-box(X;A;a;b;I;alpha;box)
, 
cons: [a / b]
, 
select: L[n]
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
decidable: Dec(P)
, 
int_upper: {i...}
, 
coordinate_name: Cname
, 
guard: {T}
, 
ge: i ≥ j 
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
top: Top
, 
l_all: (∀x∈L.P[x])
, 
subtract: n - m
, 
true: True
, 
iota': iota'(I)
, 
name-path-endpoints: name-path-endpoints(X;A;a;b;I;alpha;z;omega)
, 
is-A-face: is-A-face(X;A;I;alpha;bx;f)
, 
term-A-face: term-A-face(a;I;alpha;i)
, 
spreadn: spread3, 
less_than: a < b
, 
cubical-term-at: u(a)
Lemmas referenced : 
cubical-set_wf, 
Kan-cubical-type_wf, 
Kan-type_wf, 
cubical-term_wf, 
I-cube_wf, 
list_wf, 
int_seg_wf, 
coordinate_name_wf, 
nameset_wf, 
subtype_rel_list, 
cubical-identity_wf, 
A-open-box_wf, 
l_subset_cons_same, 
fresh-cname_wf, 
cons_wf, 
sq_stable__l_subset, 
decidable__equal-coordinate_name, 
equal_wf, 
l_member_wf, 
not_wf, 
set_wf, 
named-path_wf, 
name-path-endpoints_wf, 
fills-A-open-box_wf, 
cubical-type-at_wf, 
cubical-id-box_wf, 
l_subset_right_cons_trivial, 
nameset_subtype, 
cons_member, 
iota_wf, 
cube-set-restriction_wf, 
Kanfiller_wf, 
lelt_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
length_wf, 
decidable__lt, 
int_seg_properties, 
A-face_wf, 
non_neg_length, 
map-length, 
false_wf, 
length_of_cons_lemma, 
lift-id-face_wf, 
map_wf, 
iota'_wf, 
add-fresh-cname_wf, 
cube-set-restriction-id, 
iota'-identity, 
iff_weakening_equal, 
face-map_wf, 
cube-set-restriction-comp, 
true_wf, 
squash_wf, 
add-remove-fresh-sq, 
cubical-type-ap-morph_wf, 
subtype_rel_weakening, 
ext-eq_weakening, 
cubical-term-at_wf
Rules used in proof : 
hypothesisEquality, 
thin, 
isectElimination, 
extract_by_obid, 
introduction, 
hypothesis, 
sqequalHypSubstitution, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
natural_numberEquality, 
sqequalRule, 
rename, 
setElimination, 
independent_isectElimination, 
applyEquality, 
because_Cache, 
dependent_functionElimination, 
lambdaEquality, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalitySymmetry, 
equalityTransitivity, 
voidElimination, 
dependent_pairEquality, 
setEquality, 
dependent_set_memberEquality, 
inlFormation, 
independent_pairFormation, 
computeAll, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
unionElimination, 
addEquality, 
voidEquality, 
isect_memberEquality, 
applyLambdaEquality, 
hyp_replacement, 
universeEquality, 
promote_hyp
Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_(Kan)\}.  \mforall{}a,b:\{X  \mvdash{}  \_:Kan-type(A)\}.
    (Kan\_id\_filler(X;A;a;b)  \mmember{}  I:(Cname  List)
      {}\mrightarrow{}  alpha:X(I)
      {}\mrightarrow{}  J:(nameset(I)  List)
      {}\mrightarrow{}  x:nameset(I)
      {}\mrightarrow{}  i:\mBbbN{}2
      {}\mrightarrow{}  A-open-box(X;(Id\_Kan-type(A)  a  b);I;alpha;J;x;i)
      {}\mrightarrow{}  I-path(X;Kan-type(A);a;b;I;alpha))
Date html generated:
2018_05_23-PM-07_07_27
Last ObjectModification:
2018_05_17-PM-07_00_23
Theory : cubical!sets
Home
Index