Nuprl Lemma : lift-id-face_wf

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[I:Cname List]. ∀[alpha:X(I)]. ∀[face:A-face(X;(Id_A b);I;alpha)].
  (lift-id-face(X;A;I;alpha;face) ∈ A-face(X;A;I+;iota'(I)(alpha)))


Proof




Definitions occuring in Statement :  lift-id-face: lift-id-face(X;A;I;alpha;face) cubical-identity: (Id_A b) A-face: A-face(X;A;I;alpha) cubical-term: {X ⊢ _:AF} cubical-type: {X ⊢ _} cube-set-restriction: f(s) I-cube: X(I) cubical-set: CubicalSet iota': iota'(I) add-fresh-cname: I+ coordinate_name: Cname list: List uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T A-face: A-face(X;A;I;alpha) lift-id-face: lift-id-face(X;A;I;alpha;face) spreadn: spread3 subtype_rel: A ⊆B nameset: nameset(L) not: ¬A false: False assert: b bnot: ¬bb sq_type: SQType(T) or: P ∨ Q exists: x:A. B[x] bfalse: ff ifthenelse: if then else fi  bor: p ∨bq uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 eq-cname: eq-cname(x;y) top: Top all: x:A. B[x] implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a true: True prop: squash: T so_apply: x[s] so_lambda: λ2x.t[x] int_upper: {i...} coordinate_name: Cname I-path: I-path(X;A;a;b;I;alpha) named-path: named-path(X;A;a;b;I;alpha;z) pi1: fst(t) pi2: snd(t) iota': iota'(I) add-fresh-cname: I+ has-value: (a)↓
Lemmas referenced :  subtype-add-fresh-cname cubical-type-at_wf list-diff_wf coordinate_name_wf cname_deq_wf add-fresh-cname_wf cons_wf nil_wf cube-set-restriction_wf face-map_wf2 iota'_wf A-face_wf cubical-identity_wf I-cube_wf list_wf cubical-term_wf cubical-type_wf cubical-set_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert assert-eq-cname eqtt_to_assert bool_wf eq-cname_wf deq_member_nil_lemma deq_member_cons_lemma iff_weakening_equal list-diff-cons l_member_wf not_wf fresh-cname_wf true_wf squash_wf equal_wf fresh-cname-not-member2 int_subtype_base le_wf set_subtype_base set-path-name_wf subtype_rel_sets_simple member-list-diff istype-void istype-int value-type-has-value set-value-type coordinate_name-value-type cube-set-restriction-comp iota_wf istype-universe subtype_rel-equal length_wf length_of_cons_lemma subtype_rel_self iota-face-map fresh-cname-not-equal2 name-morph_subtype nameset_subtype l_subset_wf l_subset_refl
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution productElimination thin sqequalRule dependent_pairEquality_alt hypothesisEquality applyEquality introduction extract_by_obid isectElimination hypothesis rename universeIsType setElimination because_Cache productIsType inhabitedIsType cumulativity instantiate promote_hyp dependent_pairFormation equalityElimination unionElimination lambdaFormation voidEquality voidElimination isect_memberEquality dependent_functionElimination independent_functionElimination independent_isectElimination baseClosed imageMemberEquality natural_numberEquality setEquality universeEquality equalitySymmetry equalityTransitivity imageElimination lambdaEquality intEquality lambdaEquality_alt lambdaFormation_alt functionIsType equalityIsType1 hyp_replacement closedConclusion callbyvalueReduce dependent_set_memberEquality_alt independent_pairFormation applyLambdaEquality isect_memberEquality_alt

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[I:Cname  List].  \mforall{}[alpha:X(I)].
\mforall{}[face:A-face(X;(Id\_A  a  b);I;alpha)].
    (lift-id-face(X;A;I;alpha;face)  \mmember{}  A-face(X;A;I+;iota'(I)(alpha)))



Date html generated: 2019_11_06-PM-00_39_31
Last ObjectModification: 2018_11_08-AM-10_07_56

Theory : cubical!sets


Home Index