Nuprl Lemma : lift-id-face_wf
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[I:Cname List]. ∀[alpha:X(I)]. ∀[face:A-face(X;(Id_A a b);I;alpha)].
  (lift-id-face(X;A;I;alpha;face) ∈ A-face(X;A;I+;iota'(I)(alpha)))
Proof
Definitions occuring in Statement : 
lift-id-face: lift-id-face(X;A;I;alpha;face)
, 
cubical-identity: (Id_A a b)
, 
A-face: A-face(X;A;I;alpha)
, 
cubical-term: {X ⊢ _:AF}
, 
cubical-type: {X ⊢ _}
, 
cube-set-restriction: f(s)
, 
I-cube: X(I)
, 
cubical-set: CubicalSet
, 
iota': iota'(I)
, 
add-fresh-cname: I+
, 
coordinate_name: Cname
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
A-face: A-face(X;A;I;alpha)
, 
lift-id-face: lift-id-face(X;A;I;alpha;face)
, 
spreadn: spread3, 
subtype_rel: A ⊆r B
, 
nameset: nameset(L)
, 
not: ¬A
, 
false: False
, 
assert: ↑b
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
bor: p ∨bq
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
eq-cname: eq-cname(x;y)
, 
top: Top
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
true: True
, 
prop: ℙ
, 
squash: ↓T
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
int_upper: {i...}
, 
coordinate_name: Cname
, 
I-path: I-path(X;A;a;b;I;alpha)
, 
named-path: named-path(X;A;a;b;I;alpha;z)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
iota': iota'(I)
, 
add-fresh-cname: I+
, 
has-value: (a)↓
Lemmas referenced : 
subtype-add-fresh-cname, 
cubical-type-at_wf, 
list-diff_wf, 
coordinate_name_wf, 
cname_deq_wf, 
add-fresh-cname_wf, 
cons_wf, 
nil_wf, 
cube-set-restriction_wf, 
face-map_wf2, 
iota'_wf, 
A-face_wf, 
cubical-identity_wf, 
I-cube_wf, 
list_wf, 
cubical-term_wf, 
cubical-type_wf, 
cubical-set_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
assert-eq-cname, 
eqtt_to_assert, 
bool_wf, 
eq-cname_wf, 
deq_member_nil_lemma, 
deq_member_cons_lemma, 
iff_weakening_equal, 
list-diff-cons, 
l_member_wf, 
not_wf, 
fresh-cname_wf, 
true_wf, 
squash_wf, 
equal_wf, 
fresh-cname-not-member2, 
int_subtype_base, 
le_wf, 
set_subtype_base, 
set-path-name_wf, 
subtype_rel_sets_simple, 
member-list-diff, 
istype-void, 
istype-int, 
value-type-has-value, 
set-value-type, 
coordinate_name-value-type, 
cube-set-restriction-comp, 
iota_wf, 
istype-universe, 
subtype_rel-equal, 
length_wf, 
length_of_cons_lemma, 
subtype_rel_self, 
iota-face-map, 
fresh-cname-not-equal2, 
name-morph_subtype, 
nameset_subtype, 
l_subset_wf, 
l_subset_refl
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
dependent_pairEquality_alt, 
hypothesisEquality, 
applyEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesis, 
rename, 
universeIsType, 
setElimination, 
because_Cache, 
productIsType, 
inhabitedIsType, 
cumulativity, 
instantiate, 
promote_hyp, 
dependent_pairFormation, 
equalityElimination, 
unionElimination, 
lambdaFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
independent_functionElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
setEquality, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
lambdaEquality, 
intEquality, 
lambdaEquality_alt, 
lambdaFormation_alt, 
functionIsType, 
equalityIsType1, 
hyp_replacement, 
closedConclusion, 
callbyvalueReduce, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
applyLambdaEquality, 
isect_memberEquality_alt
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[I:Cname  List].  \mforall{}[alpha:X(I)].
\mforall{}[face:A-face(X;(Id\_A  a  b);I;alpha)].
    (lift-id-face(X;A;I;alpha;face)  \mmember{}  A-face(X;A;I+;iota'(I)(alpha)))
Date html generated:
2019_11_06-PM-00_39_31
Last ObjectModification:
2018_11_08-AM-10_07_56
Theory : cubical!sets
Home
Index