Nuprl Lemma : Kanfiller_wf
∀[X:CubicalSet]. ∀[A:{X ⊢ _(Kan)}]. ∀[I:Cname List]. ∀[alpha:X(I)]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
∀[bx:A-open-box(X;Kan-type(A);I;alpha;J;x;i)].
  (filler(x;i;bx) ∈ {cube:Kan-type(A)(alpha)| fills-A-open-box(X;Kan-type(A);I;alpha;bx;cube)} )
Proof
Definitions occuring in Statement : 
Kanfiller: filler(x;i;bx)
, 
Kan-type: Kan-type(Ak)
, 
Kan-cubical-type: {X ⊢ _(Kan)}
, 
fills-A-open-box: fills-A-open-box(X;A;I;alpha;bx;cube)
, 
A-open-box: A-open-box(X;A;I;alpha;J;x;i)
, 
cubical-type-at: A(a)
, 
I-cube: X(I)
, 
cubical-set: CubicalSet
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nameset: nameset(L)
, 
Kan-cubical-type: {X ⊢ _(Kan)}
, 
Kan-type: Kan-type(Ak)
, 
pi1: fst(t)
, 
Kanfiller: filler(x;i;bx)
, 
pi2: snd(t)
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
squash: ↓T
, 
Kan-A-filler: Kan-A-filler(X;A;filler)
, 
A-open-box: A-open-box(X;A;I;alpha;J;x;i)
, 
prop: ℙ
Lemmas referenced : 
decidable__equal-coordinate_name, 
sq_stable__l_subset, 
fills-A-open-box_wf, 
sq_stable_Kan-A-filler, 
cubical-set_wf, 
Kan-cubical-type_wf, 
I-cube_wf, 
list_wf, 
int_seg_wf, 
coordinate_name_wf, 
nameset_wf, 
subtype_rel_list, 
Kan-type_wf, 
A-open-box_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_set_memberEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
natural_numberEquality, 
isect_memberFormation, 
introduction, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
productElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
lambdaFormation
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_(Kan)\}].  \mforall{}[I:Cname  List].  \mforall{}[alpha:X(I)].  \mforall{}[J:nameset(I)  List].
\mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[bx:A-open-box(X;Kan-type(A);I;alpha;J;x;i)].
    (filler(x;i;bx)  \mmember{}  \{cube:Kan-type(A)(alpha)|  fills-A-open-box(X;Kan-type(A);I;alpha;bx;cube)\}  )
Date html generated:
2016_06_16-PM-06_44_25
Last ObjectModification:
2016_01_18-PM-04_52_14
Theory : cubical!sets
Home
Index