Nuprl Lemma : Kanfiller_wf

[X:CubicalSet]. ∀[A:{X ⊢ _(Kan)}]. ∀[I:Cname List]. ∀[alpha:X(I)]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
[bx:A-open-box(X;Kan-type(A);I;alpha;J;x;i)].
  (filler(x;i;bx) ∈ {cube:Kan-type(A)(alpha)| fills-A-open-box(X;Kan-type(A);I;alpha;bx;cube)} )


Proof




Definitions occuring in Statement :  Kanfiller: filler(x;i;bx) Kan-type: Kan-type(Ak) Kan-cubical-type: {X ⊢ _(Kan)} fills-A-open-box: fills-A-open-box(X;A;I;alpha;bx;cube) A-open-box: A-open-box(X;A;I;alpha;J;x;i) cubical-type-at: A(a) I-cube: X(I) cubical-set: CubicalSet nameset: nameset(L) coordinate_name: Cname list: List int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a nameset: nameset(L) Kan-cubical-type: {X ⊢ _(Kan)} Kan-type: Kan-type(Ak) pi1: fst(t) Kanfiller: filler(x;i;bx) pi2: snd(t) sq_stable: SqStable(P) implies:  Q and: P ∧ Q squash: T Kan-A-filler: Kan-A-filler(X;A;filler) A-open-box: A-open-box(X;A;I;alpha;J;x;i) prop:
Lemmas referenced :  decidable__equal-coordinate_name sq_stable__l_subset fills-A-open-box_wf sq_stable_Kan-A-filler cubical-set_wf Kan-cubical-type_wf I-cube_wf list_wf int_seg_wf coordinate_name_wf nameset_wf subtype_rel_list Kan-type_wf A-open-box_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_set_memberEquality cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination hypothesis applyEquality independent_isectElimination lambdaEquality setElimination rename because_Cache sqequalRule natural_numberEquality isect_memberFormation introduction axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality productElimination independent_functionElimination imageMemberEquality baseClosed imageElimination lambdaFormation

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_(Kan)\}].  \mforall{}[I:Cname  List].  \mforall{}[alpha:X(I)].  \mforall{}[J:nameset(I)  List].
\mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[bx:A-open-box(X;Kan-type(A);I;alpha;J;x;i)].
    (filler(x;i;bx)  \mmember{}  \{cube:Kan-type(A)(alpha)|  fills-A-open-box(X;Kan-type(A);I;alpha;bx;cube)\}  )



Date html generated: 2016_06_16-PM-06_44_25
Last ObjectModification: 2016_01_18-PM-04_52_14

Theory : cubical!sets


Home Index