Nuprl Lemma : Kanfiller-uniform

[X:CubicalSet]. ∀[A:{X ⊢ _(Kan)}]. ∀[I:Cname List]. ∀[alpha:X(I)]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
[bx:A-open-box(X;Kan-type(A);I;alpha;J;x;i)].
  ∀K:Cname List. ∀f:name-morph(I;K).
    ((∀i:nameset(I). ((i ∈ J)  (↑isname(f i))))
     (↑isname(f x))
     ((filler(x;i;bx) alpha f)
       filler(f x;i;A-open-box-image(X;Kan-type(A);I;K;f;alpha;bx))
       ∈ Kan-type(A)(f(alpha))))


Proof




Definitions occuring in Statement :  Kanfiller: filler(x;i;bx) Kan-type: Kan-type(Ak) Kan-cubical-type: {X ⊢ _(Kan)} A-open-box-image: A-open-box-image(X;A;I;K;f;alpha;bx) A-open-box: A-open-box(X;A;I;alpha;J;x;i) cubical-type-ap-morph: (u f) cubical-type-at: A(a) cube-set-restriction: f(s) I-cube: X(I) cubical-set: CubicalSet name-morph: name-morph(I;J) isname: isname(z) nameset: nameset(L) coordinate_name: Cname l_member: (x ∈ l) map: map(f;as) list: List int_seg: {i..j-} assert: b uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  Kan-cubical-type: {X ⊢ _(Kan)} Kan-type: Kan-type(Ak) pi1: fst(t) Kanfiller: filler(x;i;bx) pi2: snd(t) and: P ∧ Q uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler) all: x:A. B[x] member: t ∈ T implies:  Q uall: [x:A]. B[x] name-morph: name-morph(I;J) so_lambda: λ2x.t[x] prop: nameset: nameset(L) subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s]
Lemmas referenced :  assert_wf isname_wf all_wf nameset_wf l_member_wf coordinate_name_wf subtype_rel_list name-morph_wf list_wf A-open-box_wf Kan-type_wf int_seg_wf I-cube_wf Kan-cubical-type_wf cubical-set_wf
Rules used in proof :  sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity setElimination thin rename cut productElimination sqequalRule hypothesis dependent_functionElimination hypothesisEquality independent_functionElimination lemma_by_obid isectElimination applyEquality lambdaEquality functionEquality independent_isectElimination because_Cache natural_numberEquality isect_memberFormation introduction lambdaFormation axiomEquality isect_memberEquality

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_(Kan)\}].  \mforall{}[I:Cname  List].  \mforall{}[alpha:X(I)].  \mforall{}[J:nameset(I)  List].
\mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[bx:A-open-box(X;Kan-type(A);I;alpha;J;x;i)].
    \mforall{}K:Cname  List.  \mforall{}f:name-morph(I;K).
        ((\mforall{}i:nameset(I).  ((i  \mmember{}  J)  {}\mRightarrow{}  (\muparrow{}isname(f  i))))
        {}\mRightarrow{}  (\muparrow{}isname(f  x))
        {}\mRightarrow{}  ((filler(x;i;bx)  alpha  f)  =  filler(f  x;i;A-open-box-image(X;Kan-type(A);I;K;f;alpha;bx))))



Date html generated: 2016_06_16-PM-06_44_30
Last ObjectModification: 2015_12_28-PM-04_25_32

Theory : cubical!sets


Home Index