Nuprl Lemma : Kanfiller-uniform
∀[X:CubicalSet]. ∀[A:{X ⊢ _(Kan)}]. ∀[I:Cname List]. ∀[alpha:X(I)]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
∀[bx:A-open-box(X;Kan-type(A);I;alpha;J;x;i)].
  ∀K:Cname List. ∀f:name-morph(I;K).
    ((∀i:nameset(I). ((i ∈ J) ⇒ (↑isname(f i))))
    ⇒ (↑isname(f x))
    ⇒ ((filler(x;i;bx) alpha f)
       = filler(f x;i;A-open-box-image(X;Kan-type(A);I;K;f;alpha;bx))
       ∈ Kan-type(A)(f(alpha))))
Proof
Definitions occuring in Statement : 
Kanfiller: filler(x;i;bx), 
Kan-type: Kan-type(Ak), 
Kan-cubical-type: {X ⊢ _(Kan)}, 
A-open-box-image: A-open-box-image(X;A;I;K;f;alpha;bx), 
A-open-box: A-open-box(X;A;I;alpha;J;x;i), 
cubical-type-ap-morph: (u a f), 
cubical-type-at: A(a), 
cube-set-restriction: f(s), 
I-cube: X(I), 
cubical-set: CubicalSet, 
name-morph: name-morph(I;J), 
isname: isname(z), 
nameset: nameset(L), 
coordinate_name: Cname, 
l_member: (x ∈ l), 
map: map(f;as), 
list: T List, 
int_seg: {i..j-}, 
assert: ↑b, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
Kan-cubical-type: {X ⊢ _(Kan)}, 
Kan-type: Kan-type(Ak), 
pi1: fst(t), 
Kanfiller: filler(x;i;bx), 
pi2: snd(t), 
and: P ∧ Q, 
uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler), 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
name-morph: name-morph(I;J), 
so_lambda: λ2x.t[x], 
prop: ℙ, 
nameset: nameset(L), 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
so_apply: x[s]
Lemmas referenced : 
assert_wf, 
isname_wf, 
all_wf, 
nameset_wf, 
l_member_wf, 
coordinate_name_wf, 
subtype_rel_list, 
name-morph_wf, 
list_wf, 
A-open-box_wf, 
Kan-type_wf, 
int_seg_wf, 
I-cube_wf, 
Kan-cubical-type_wf, 
cubical-set_wf
Rules used in proof : 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
setElimination, 
thin, 
rename, 
cut, 
productElimination, 
sqequalRule, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
lemma_by_obid, 
isectElimination, 
applyEquality, 
lambdaEquality, 
functionEquality, 
independent_isectElimination, 
because_Cache, 
natural_numberEquality, 
isect_memberFormation, 
introduction, 
lambdaFormation, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_(Kan)\}].  \mforall{}[I:Cname  List].  \mforall{}[alpha:X(I)].  \mforall{}[J:nameset(I)  List].
\mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[bx:A-open-box(X;Kan-type(A);I;alpha;J;x;i)].
    \mforall{}K:Cname  List.  \mforall{}f:name-morph(I;K).
        ((\mforall{}i:nameset(I).  ((i  \mmember{}  J)  {}\mRightarrow{}  (\muparrow{}isname(f  i))))
        {}\mRightarrow{}  (\muparrow{}isname(f  x))
        {}\mRightarrow{}  ((filler(x;i;bx)  alpha  f)  =  filler(f  x;i;A-open-box-image(X;Kan-type(A);I;K;f;alpha;bx))))
Date html generated:
2016_06_16-PM-06_44_30
Last ObjectModification:
2015_12_28-PM-04_25_32
Theory : cubical!sets
Home
Index